System Flowchart Descriptions
Page 1 of 33

System Flowchart Descriptions
NOTE: These sample pages represent a work-in-progress. As such, there are a few comments and points of discontinuity. The flowchart that this document describes is large (48” x36 ”). The flowcharts herein are miniaturized sections of the big flowchart.

[image: image9..pict]
System Flowchart Descriptions

Table of Contents

(The numbers on the left-hand side of the Table of Contents correspond to the module numbers shown on the flowcharts.)

3INTRODUCTION TO THE SYSTEM FLOWCHART

TRANSPORTS, EVENT MANAGER, THREADPOOL MANAGER
5
1.
Transports
5
2.
Event Manager
5
3.
Threadpools
5
TRANSLATORS, COMMAND PROCESSORS, AUTHENTICATION, SESSION MANAGER
5
4.
Request Type Translator
5
5.
Command Translators
5
6.
Command Processors
5
7.
Authentication Manager
5
8.
Session Manager
5
QUERYMAPS, REPORT WRITER, TAG LIBRARY
5
9.
Querymap Processor
5
10.
Report Writer (Content Template)
5
11.
Tag Libraries
5
ACCESSORS, STORES, VALUE FRAMEWORK, VARIABLE FRAMEWORK
5
12.
Accessors
5
13.
Stores
5
14.
Value Framework
5
15.
Variable Framework
5
REPORTING MANAGER
5
16.
Reporting Manager
5

INTRODUCTION TO THE SYSTEM FLOWCHART
The purpose of this introduction is to explain the format of the System Flowcharts. The System Flowcharts highlight the flow of both Data and Process. Boxes represent Process and circles represent Data.

“Process” is action: Process occurs when some entity (someone or some computer program) does something. Process always creates and/or acts on Data.

“Data” is passive. Data is something created by and/or acted upon by Process. Data always feeds into one or more Processes.

Examine the flowchart in Figure 1 below.

[image: image2.wmf]
Figure 1. Sample Flowchart showing flow of both Process and Data.

The following rules apply to Figure 1 and the flowcharts that follow:

· Boxes represent Process.

· Circles represent Data.

· Dashed lines show the flow of Data to/from Processes (to/from either side of the Process box).

· Solid lines show the flow from Process to Process.

· A Process can receive or output one or more Data elements.

· Data elements can flow to more than one Process.

· A Process always creates or transforms Data that feeds another Process, which creates or transforms Data, which feeds another Process, and so on.

The System Flowchart is a functional overview (not a detailed programming flowchart). It shows how MS+ works, showing basic Process and Data flows to help you visualize planning of services. In this document, the Flowchart is divided into page-size pieces with descriptions. It illustrates the flow of essential processes and data to give you an idea of how MS+ works.

We have divided the major pieces of the software functionality into “modules” that:

· accept essential data,

· perform essential functions, and

· output other essential data for other processes.

The following pages describe the major MS+ modules shown on the System Flowchart. For each module, the following information is given:

· Function (of the module)

· Called by (calling module)

· Data in (to the module)

· Process (description of the module’s actions)

· Data out (from the module)

NOTES: Remember that MS+ is not a monolithic server that serves one single purpose. Rather, it is a set of components that the service developer knits together by to support one or more services. This knitting occurs via the configuration files created by the service developer MS+ consults the configuration files upon startup to establish the necessary connections between its components.

Config files look like .ini files, consisting of named categories enclosed in square brackets, like [main].
Within each category are zero or more keys, which are name/value pairs, with the name separated from the string value by an equal sign.

When MS+ is started, it looks in the current directory for local.config. If it cannot find it, it looks for main.config. If it can’t find that, it aborts.

One config file can include another config file. Any keys in any categories in the file doing the inclusion will override any corresponding keys in any included file. For example, a typical local.config file for a service developer will specify the database and schema/user specific for that developer, and then include the regular main.config.

Of greatest importance here, while MS+ offers vast configurability, in practice things will not change from service to service. Example: the set of tags available to a querymap, or the classes of accessor objects for a JDBC-based store. These settings are stored in default.config.

TRANSPORTS, EVENT MANAGER, THREADPOOL MANAGER
Study the flowchart in Figure 2 below:

___ Notice the flow of essential data elements from the User’s request, via Telecarrier, to the Transports to the Threadpool Manager (and beyond).

___ Notice how the formatted answer from the Command Processor to the Dispatcher, then out to the User.

___ Notice also the flow of data elements from the Event Manager to the Threadpool Manager.

[image: image3.wmf]
Figure 2. Transports, Event Manager, and Threadpool Manager

Following are descriptions for the major flowchart modules shown:

Transports
page 5
Event Manager
page 5
Threadpools
page 5
1. Transports

Function:
To listen for incoming requests and events, and/or to dispatch requested data.

Called by:

Triggered by incoming request or internal event clock signal.

Data in from:

Configuration files

Incoming request or module requesting dispatch.

Process
Each transport has a request translator list and a command list. Once the listener places the raw request into variables in a variable context, the request is translated according to the list of request type translators in the config file. In theory, one can specify multiple translators. In practice, there is usually just one request translator per transport.

Depending on the Request Type Translator, the ordering of the command list can be significant (some translators use the first listed command processor as the command to execute for all requests). If a translator tries to run an unlisted command, the server will throw an exception.

Data out to:

Threadpool Manager

Notes
Two objects, created upon server startup, define a transport. One object listens for incoming requests, the other dispatches data. A transport can be listen only, dispatch only, or listen & dispatch. Transports, like email or SMS, provide full configuration flexibility. Other transports, like HTTP, must be configured to both listen & dispatch; (listener will create its own dispatch object).

Listener objects create a request handler object for each request. These request handler objects are given to a Threadpool object to be run by an available thread. The config file specifies the Threadpool choice. Multiple transports can use the same Threadpool.

Transports are associated with one and only one service (at this time). You specify the service by ID in the transport’s configuration.

You also have control over how and if a transport performs authentication on requests. Part of the “how” is through the service configuration files, but other parts are done here, saying whether to authenticate at all, what login type to use, and other parameters.

Finally, you have control over how long idle sessions live, whether anonymous requests have sessions, etc.

2. Event Manager

Function:

To manage the event subsystem.

To begin request translation and processing for server-initiated events.

Called by:

The Event Manager is triggered by an internal clock signal.

Data in from:

When triggered, the Event Manager retrieves information about the event from the File System (via Accessor call, not shown on the flowchart).

Process
The Event Manager has a request translator list and a command list. The Event’s request is translated according to the list of Request Type Translators in the config file.

Depending on the Request Type Translator, the ordering of the command list can be significant (some translators use the first listed command processor as the command to execute for all requests).

Data out to:

Threadpool Manager

3. Threadpools

Function:

To parse execution of incoming requests among multiple threads, for efficient request handling.

To create threads when needed.

To hand runnable objects to threads waiting for something to do. At least one thread is a listener.

Called by:

Threads are not “called.” Threads provide a way to organize and interleave work.

Data in from:

N/A

Process
The Threadpool allows programs to run in pieces, taking advantage of IO delays.

When a MS+ module needs something done, it creates a runnable object and hands it to the Threadpool, which finds a free thread and gives it the object to run. The thread then calls the run() method of the object. When that method returns, the thread is returned the pool.

The config file specifies a limited number of threads to create for each pool. A typical production system has 75 threads. In addition to the threads, the Threadpool maintains a queue of runnable objects, to handle momentary spikes of requests. The number of objects it will hold in its queue is specified with the waitLimit key in the category for the Threadpool.

Data out to:

N/A

Notes
Threadpools are named, and referred to by name within each transport’s configuration category. A single pool can be shared among multiple transports. The OS takes care of switching threads.

The configuration category for a Threadpool is threadpool:name
The Service Developer can configure Threadpools to limit the number of threads (say, 5 for http, 10 for events, etc.). We do not create new threads for every request due to high overhead.

MS+ uses one thread to fulfill the requirements of an entire request.

A single thread is associated with the Session Manager (to delete old sessions).

A transport starts the process – the runnable object has all the processes necessary to do everything – when it returns (done) the object is thrown away.

Version 4.0 will allow real-time Threadpool management “on the fly.”

TRANSLATORS, COMMAND PROCESSORS,
AUTHENTICATION, SESSION MANAGER
Study the flowchart in Figure 2 below:

___ Notice the User must be authenticated before the request is processed. That is, if the User is not logged in, the first step is to go to the Authentication Manager (7), which creates the User ID and session object if the User is authenticated.

___ Notice that if the User cannot be authenticated, an error screen is sent back to the Dispatcher.

___ Notice that the request goes through two translators (Request and Command) before being processed by the Command Processor (6).

___ Notice that the Command Processor, once run, sends its output (formatted answer) back to the Dispatcher.

[image: image4.wmf]
Figure 3. Translators, Command Processor, Authentication, Session Manager

Following are descriptions for the major flowchart modules shown above:

Request Type Translator
page 5
Command Translators
page 5
Command Processors
page 5
Authentication Manager
page 5
Session Manager
page 5
4. Request Type Translator

Function:

To translate requests into a standard format.

Called by:

Threadpool Manager

Data in from

A variety of transport protocols and formats.

Process
The Transport Layer accepts requests using a variety of transport protocols and formats. Whatever the protocol, the Transport Layer translates requests into a standard format. Thus, you don’t have to worry about transport protocol differences!
Internally, MS+ sets its variables to phrase the request in formats based on its raw transport, its request type, and a common command format. These variables represent the components of the raw request. The names and structures of these variables depend on the transport type because each transport protocol delivers equivalent messages in a different format. For HTTP, variables are set for header fields, the HTTP command used, and other parts of the request.

MS+ uses an abstract request type
 to represent varying request formats that may be used across transports.

For example, a “text keyword” request might be used by both an SMS phone and email client. This kind of request might accept a keyword in the body of the message followed by space-delimited parameters. Thus, MS+ sets a set of variables based on translating a request into its request type.

MS+ then performs user authentication, based on the login type of the transport.

MS+ may accept all requests (anonymous user) or verify the user via user ID and password. If sessions are being used, MS+ attempts to connect ensuing user requests to the session object created on the initial request.

Finally, a request is translated into “command format.”

MS+ ultimately processes each request by running a command that typically sends output to the user’s device. The commands used most often are getcontent and getbinary, which send the specified objects. The variables set for this format are essentially the command name, and any additional parameters bound for this command.

Data out to

Command Translator

5. Command Translators

Function:

To…

Called by:

Request Type Translator

Data in from

Request Type Translator provides a request in “command format.”

Process
Data out to

Command Processor

6. Command Processors

Function:

To run appropriate commands to satisfy user’s request. The command processor is the “hub” of activity, organizing things.

Called by:

Command Translator

Data in from

Command Translator

Process
The command specified for a given request determines how that request flows through the server and what action the server takes.

MS+ has a set of predefined commands, where each command is a class that extends GenericCommandProcessor. This allows a service developer to develop additional commands, if necessary, that easily plug into the framework.

The most used commands in a typical service are the getcontent and getbinary commands, which are processed similarly.

Both commands take a channel and screen name and look for a querymap of that name as specific as possible to the following:

· device,

· content language, and

· natural language for the client.

If the command finds the desired querymap
, it runs the querymap.

Once the querymap has run, the getcontent and getbinary paths diverge.

getcontent looks for a template for the screen, again finding the most specific one, and processes it, resulting in a body that can be returned to the client.

getbinary, looks to

· see if the querymap set the output of the request, or

· if no querymap was run, determine which binary file, most specific to the device, it should set as the output of the request.

At this point, the getcontent and getbinary command paths join up, because both commands dispatch the request’s output to the client.

Other available commands are run, which simply execute a querymap (but dispatch nothing),

· logout, which is like getcontent but also terminates the client’s session, and

· getstatic, which returns a static file without looking for a querymap to run or performing authentication or access control.
Data out to

Dispatcher

7. Authentication Manager

Function:

To determine requesting user’s permissions. Once the user information setting is accessed, the access level is linked, then user information and permissions is mapped in.

To set defaults for certain transports or request types, such as an SMS request (comes in with a phone number, which is the login ID).

To check for match in the database tables.

To validate login type, login ID, and password (if any). Log-in type & Log-in ID form a key that maps to a User ID, which has an access level. (The login ID doesn’t necessarily tell you the User ID.)

To link phone numbers or user names to the User ID.

Called by:

Request Translation Process or a service developer call

Data in from:

Request Translation Process or a service developer call

Log in type & Log in ID, optional password

Process
Look for matches in the database table and return the User ID

Data out to: Request Translation Process

User “OK” and User ID

If pass, return user ID to show user is authenticated.

If no pass, null (the calling program must notify user to try again).

8. Session Manager

Function:

To create sessions.

To manage session IDs (ID generation and lookup sessions based on ID)

To expire sessions based on timeout, and delete expired session information

To track user’s session information; if MS+ has a subsequent request (with session ID), then Session Manager looks up the session and if found, authenticates that user as already associated with that session. Thus, the users don’t have to log in for every request (unless time-out). (A session is “active” until timeout.)

To maintain session variables.

To track active sessions by machine.

Called by:

Command Processor
at the same time as authentication, depending if request already has an ID.

Data in from Command Processor

Session ID (returns session object)

User ID (if you’re creating a session) and potentially the ID you want associated with the session, otherwise the session manager will create one.

Process

Data out to Command Processor

Session object (if you’re looking up a session ID) or

User ID (if creating a session)

QUERYMAPS, REPORT WRITER, TAG LIBRARY
Study the flowchart in Figure 4 below:

___ Notice the inputs and outputs of the Querymap Processor and Report Writer.

___ Notice that both the Querymap Processor and Report Writer make calls to the Tag Library, passing certain data with the call.

___ Notice that both the Querymap Processor and Report Writer can make Accessor calls and receive requested data from the called Accessor.

[image: image5.wmf]
Figure 4. Querymaps, Report Writer, Tag Library

Following are descriptions for the major flowchart modules shown above:

Querymap Processor
page 5
Report Writer (Content Template)
page 5
Tag Libraries
page 5
9. Querymap Processor

Function:

To process a given querymap, running appropriate tags and possibly returning a value).

To call other querymaps/content templates (RUNQM/RUNCT), as required.

Routing (FORWARDing) permitted.

Called by:

Command Processor

Data in from Command Processor

Querymap channel/name, optional parameters, device/language

Process
Process the querymap, run appropriate tags, and may return value(s), depending on the tag.

Data out to Command Processor

Value(s) generated by the process.

10. Report Writer (Content Template)

Function:

To process a given content template, running appropriate tags; content templates always returns value.

To call other querymaps/content templates (RUNQM/RUNCT), as required.

No routing (FORWARD) permitted.

Called by:

Command Processor

Data in from Command Processor

Querymap channel/name, optional parameters, device/language

Process
Process the content template, run appropriate tags, and return value(s).

Data out to Command Processor

Value(s) generated by the process.

Notes

Notice that Report Writer does not “report” value(s) back to the Dispatcher; this function is handled by the Command Processor.

11. Tag Libraries

The TAG LIBRARY is a library of tag processors that are shared by the Querymap and Report Writer processors. For each tag, the library contains all the logic necessary to process the tag.

The variable context for a request’s variables is explicitly passed through each module.

Function:

To process the named tag and return associated parameters.

Called by:

Querymap and Report Writer processors (when tags occur).

Data in from calling processor

Tag name and various optional tag parameters and variables.

Process
Process the tag and parameters specified by the calling processor.

Data out to calling processor

Parameters and variables generated by processing the tag. Each tag has a different effect and generates different output.

ACCESSORS, STORES, VALUE FRAMEWORK, VARIABLE FRAMEWORK
Study the flowchart in Figure 5 below:

___ Notice the Accessor call from and returned outputs to the calling processor (typically, Querymap Processor or Report Writer).

___ Notice that Accessors call Stores, which access the file system or database(s) (transparent to the service developer).

___ Notice that the Value and Variable Frameworks can be called by a variety of other programs.

___ Notice that the Variable Framework returns a single value while the Value Framework returns multiple values.

[image: image6.wmf]Accessor

call (Store

request)

Accessor

response

(requested

Store data)

Store

request from

specified

Accessor

Request ed

data from

Stores

File

system

Database

Database

12. ACCESSORS

QM Accessor

CT Accessor

Event Acessor

.

.

.

.

13. STORES

File system

Database

Database

.

.

.

.

14. VALUE

FRAMEWORK

Convert between

valuetypes

Interpret values

Lookup/assign

child values

API

method

call

Variable

Framework

QM processing

CT processing

Tag Libraries

CALLING

PROGRAMS

Value(s)

return value(s) to calling program

15. VARIABLE

FRAMEWORK

Persistent DB

Global (system,

languages)

Session based

Request-based

(local)

Assign

Map

Lookup

Replace

Delete

API

method

call

Value

return value to calling program

Value Framework

QM processing

CT processing

Tag Libraries

CALLING

PROGRAMS

Figure 5. Accessors, Stores, Value Framework, Variable Framework

Following are descriptions for the major flowchart modules shown above:

Accessors
page 5

Stores
page 5

Value Framework
page 5

Variable Framework
page 5
12. Accessors

Function:

To access data specified by the calling program.

Data in from calling program:

Call includes the interface
 class that indicates the type of accessor it wants, such as, UserValidationAccessor.

Process
The diagram below shows a simplified view of how code gets or puts data of a server-defined type.

· Step 1: The Code Wanting Data calls the Service Object, passing the interface class that indicates the type of accessor it wants, such as, UserValidationAccessor.

· Step 1a: The Service Object consults its Accessor-to-Store Map to locate the specified Store Object.

· [image: image1.wmf]Step 2: The Service Object calls the Store Object (passing the same interface class it received) to ask for the object that will access data of the specified type within that store.

· Step 2a: The Store Object, consults its Accessor-to-Object map.

Figure 6. Simplified View of how Code gets or puts Data
· Step 3: The Store Object returns the specified object to the Service Object.

· Step 4: The Service Object returns the object to Code Wanting Data.

· Step 5: Code Wanting Data calls the Accessor Object.

· Step 6: Accessor Object retrieves the desired data and returns it to Code Wanting Data.

Not shown in this diagram are the steps necessary to do the following:

· locate the service object

· cache accessor objects within the service object

· handle multiple stores for a particular type of data

These topics are more advanced. This description simply gives you the flavor of data access, which should help clarify the configuration process.

Data out to the calling program.

Returns requested data to the calling program.

Notes
Accessor objects are essential to MS+ operation. MS+ defines a set of data types to which it needs access, such as, user validation information, parsed querymap documents, or request log entries.

For each data type, there is

· a defined interface that an object class that accesses the data type must implement, plus,

· a defined object class that contains the parameters needed to get or put an object of that type.

The configuration file tells MS+, for a particular service, in what store it should look for objects of each defined data type. The configuration file can specify multiple stores that are searched in strict left-to-right order.

13. Stores

Function:

To store information in a file system or JDBC compliant database.

Data in from:

Calling Accessor

Process
(See Notes below.)

Data out to:

Calling Accessor

Notes
Stores are referenced by name. Each named store has a category called store:name. Within this category, the most important key is type, which specifies the object class of the store. Other keys in the category depend on this class.

com.geoworks.premion.server.store.DBStore has four parameters:

· driver is the class of the JDBC driver to use,

· url is the URL to driver for connecting to the database,

· loginName and password are used to authenticate to the database.

For Oracle, this is the schema name and password.

com.geoworks.premion.server.store.FileStore has only one parameter: path, which is the root directory (potentially relative to a service’s home directory) for files sought within the store.

Store classes themselves have additional configuration
.

Each store class must be configured to specify the accessor classes it uses. The store class has a category named for the class path of the store class, and contains two keys:

· accessorClassPath gives the root path of all the accessor classes

· accessors is a list of class names, in no particular order, as they will be sought based on the interfaces they implement (which indicate the data types they support).

A store can have as many (or few) accessors as needed; if someone requests an accessor not supported by the store, it will simply return null.

There are two types of stores currently supported, with the possibility of adding others in the future:

· File and

· DB.

File and DB store data in a filesystem or a JDBC-enabled database, respectively.

While a store has an administrative object class that identifies it, all the functionality is in the different classes that implement the various data type accessor interfaces. The administrative object for the store returns an object of the appropriate class when asked for an accessor for a particular data type.

Frequently the administrative object will implement core functionality shared by different accessor objects, but this is not a requirement.

A store does not need to have accessor objects for all the server-defined data types; it may have only one or two, if it’s a special-purpose store. For example, an LDAP store used for user validation might only implement accessors for UserValidation, UserInfoVarContext, and UserVariableVarContext.

14. Value Framework

The VALUE FRAMEWORK is used as support system for other processes; it’s a set of utility functions. VALUE FRAMEWORK does not maintain state or persistent information.

Called by:

Variable Frame work, querymap processing, content template processing, Tag Library.

Function:

To process value types associated with variables or passed through querymaps or system.

To convert value types (number to string).

To look up/assign child values (list assign element in list).

To interpret values within a document.

Data in from calling program (Variable Framework, document processors, Tag Libraries)

Used by variables, document processors (Querymap, Report Writer), Tag Libraries.

Depends on calling task – it’s like a library with different functions that can be used (convert = value and type to change to).

Calling sequence varies as a function of service requested.

Process
Convert, look up, assign, or interpret values within a document.

Data out to calling program (Variable Framework, document processors, Tag Libraries)

Returned information depends on the type of call.

If you have a string within a document with variable replacement, replacement values are returned.

Values can be passed without being assigned to variables (tag returns value, return to surrounding tag).

15. Variable Framework

Function:

To assign, map, lookup, replace, and delete variables; to manage configurations of where persistent variables are stored

Called by:

Value Framework, querymap processing, content template processing, Tag Library.

Data in from calling program (Value Framework, document processors, Tag Libraries)

Process

Based on the call, assign, map, lookup, replace, and delete variables.

Data out to calling program (Value Framework, document processors, Tag Libraries)

In the case of a lookup, the call supplies the name of the variable and gets a value back; for assign or delete, the call supplies the variable to assign or delete.

Notes
In the process of servicing a series of user requests, MS+ maintains some state information.

· Some state information is significant only while the request is being processed;

· Some information is relevant during a “session,” when a user is actively using the service, and

· Some information must be maintained over longer periods.

· MS+ stores each piece of information as a variable, each of which can be retrieved based on its identifier name. An object, called a variable context, groups a set of these variables.

Types of Variables

user:variables (persistent DB), grabbed from database as necessary, changed upon demand permanent user preference variables and user information variables

request: (default), only last as long as the request; raw request attributes (all untranslated request information)

session: (system-based), kept in memory until the session times out; session variables, kept during each user/device session

system: (global), read only, mapped across all users; system variables (e.g. system time)

output: output variables (used by MS+ to pass output information to the appropriate dispatcher).

language: (global), read only, mapped across all users; language-specific variables; mapped dynamically based on the current request (html variables for example)

Local (request-based), only last as long as the running of a particular querymap

REPORTING MANAGER
Study the flowchart in Figure 7below:

___ Notice that the Reporting Manager accepts input from two sources: the Console Operator and the system.

___ Notice that the Reporting Manager sends two reports: report to Console Operator and report to the Store system.

[image: image7.wmf]
Figure 7. Reporting Manager

Following are descriptions for the major flowchart module shown above:

Reporting Manager
page 5
16. Reporting Manager

Function:

To report errors and monitored information, based on previously setup listeners.

To manage propagation of reporting through the managers and send it to listeners.

To permit dynamically added listeners via console debugger.

To allow the association of listeners with both managers and modules.

To allow specification of what to listen to (info, warnings, errors) and the levels within each (Low/Med/High).

Called by:

Two sides: the reporting side that sends information associated with the message and its level; the listener interface side.

Service developer would probably configure the listeners for the service.

Data in from

Listeners.

Process
At any point during processing, MS+ can be set up to listen for and report certain information (debug, log information, etc.) (see diagram).

When something goes wrong, the reporting goes against the managers.

Data out:

There’s two types of reporting

· Module (global, when some thing breaks, administration – not just looking at a given request) and

· Transaction (in the context of a particular requests).

Transaction reporting has another identifier associated when developers want to debug, for example, “I want to trace variables, or what happens during authentication.”

Notes
The system managers are hierarchically organized.

managermanager manages other managers. For example, managermanager manages the Transport Manager and all transports underneath (email, http, SMS, etc).

When something goes wrong, the reporting goes against the managers.

You can associate listeners with both managers and modules.

If you have a hierarchy of listeners, the listeners hear all errors reported to that manager or any of its children. If you’re listening at the top of the hierarchy, you’ll hear everything. Messages propagate up the tree. The Reporting Manager figures out how to propagate it through the other managers and how to send it to listeners.

You can specify what to listen to (info, warnings, and errors) and the levels within each (Low/Med/High). Example: you can listen to just the High errors on the http transport.

You can set up file listeners, stdout, GUI, email. You can have multiple listeners to any (item(s)) in the system and send them to any specified file.

The console and debugger let you dynamically add/remove listener while running.

A reporter is used to monitor happenings within the server. There are two contexts in which things can happen:

· within a module, generally info or errors more global in nature, or

· within a transaction (AKA a request) things that happen during request processing.

Nearly everything in MS+ can have one or more reporters observing it. This is done by including a moduleReporters or transactionReporters key in the appropriate category and giving a comma-separated list of ids, one for each reporter that must listen.

A reporter is configured in a category that looks like [reporter:id]. The most important element is the reporter type, which is the name of a reporter class. MS+ defines several types of reporters: StdOutReporter, SmtpReporter, FileReporter, and GraphicalReporter, which record events to the server’s output screen, to email, to a file, or to the graphical local console, respectively.

A reporter can be configured to control the level of information events it receives and records, specifying a list of modulePriorities of lowInfo, medInfo, highInfo, lowWarn, medWarn, highWarn, lowError, medError, or highError. By default, all information is logged.

Each reporter class has additional parameters that control where the information goes. For example, FileReporter specifies a file, while SmtpReporter specifies an email address.

The bare [reporters] category specifies reporters that are to be created when the server boots, though reporters will be created as they are needed when specified in some module’s category.

� EMBED Visio.Drawing.6 ���

� The abstract class is a class created as a master structure, allowing definitions of subclasses of the abstract class with their own variations, which create the actual objects.

� An “interface” is a property of a class that specifies which methods it must have. An interface is similar to an abstract class, but classes are not derived from interfaces.

�PAGE \# "'Page: '#'�'" ��update information in the Command Translator box.

�PAGE \# "'Page: '#'�'" ��needs development

�PAGE \# "'Page: '#'�'" ��What if it doesn’t?

�PAGE \# "'Page: '#'�'" ��This doesn’t match flowchart. Does the Command Processor call the Session Manager?

�PAGE \# "'Page: '#'�'" ��need to investigate the process

�PAGE \# "'Page: '#'�'" ��This doesn’t match flowchart. Does the Command Processor call the Session Manager?

�PAGE \# "'Page: '#'�'" ��describe additional configuration

/system flowchart descr/10/17/06
Mike Hayden

[image: image8.wmf]Code

Wanting

Data

Service

Object

Store

Object

Accessor

Object

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

Accessor-to-Store Map

Accessor-to-Object Map

Type

Store

Type

Object

_1054108323.vsd

_1054108378.vsd

_1052817325.vsd

_1053866464.vsd

_1052817411.vsd

_1052817277.vsd

_1046087847.vsd

