

Page 30 of 155

NOTE:

This manuscript is a work in progress, being prepared for a technical review by the software engineers and designers.

There are many questions outstanding; these are flagged using MS Word’s “View/Comments” feature.”

[image: image1.wmf]
Reference Section

Updated Thursday, April 19 – per Tim’s comments

Preliminary Review Draft

Mike Hayden

Overview for Reviewers

Purpose of the SDK References Section

The purpose of the SDK References Section is:

· To provide data tables and other technical information necessary to support the purposes of the SDK
· To organize and index this reference information for fast access

The primary users of the SDK References Section will be service developers and UNIX/HTML/Java programmers.
Main Elements of the SDK References Section

This section covers technical content and details that service developers and programmers will need. Following are the main topics in order.

10Special Terminology used in this Section

Introduction to Mobile Server Plus
11
Introduction to Service Development for MS Plus
15
Service Development Overview:
16
MS Plus Service Overview
20
Values & Variables
29
Introduction to MSML Tags
38
Using MSML Tags
48
Language Issues
52
Authentication & Access Control
56
Data Accessors
59
SLIDE 45 (end of slide pitch)
61
MSML Tags Organized by Functional Groups
62
Effective Coding Practice
63
Effective Coding Practice
88
Querymaps, Content templates, and Binaries
93
MSML Tags Reference
96
MS Plus Configuration
154

The above order subject to change. My emphasis for this draft was to get the necessary information in there somewhere. I am open to suggestions for the best arrangement for new users.

There is a more detailed Table of Contents beginning on the following page.

I will appreciate your review of this material for technical accuracy and completeness.

This manuscript was double-spaced so you have room between lines for handwritten comments. Please make all changes and comments in RED INK.

NOTE: If you would rather dictate your comments, I can provide a tape recorder for your use.

Thank You,

Mike Hayden

Table of Contents

2Purpose of the SDK References Section

Special Terminology used in this Section
10
Introduction to Mobile Server Plus
11
The Basics of Wireless Technology
12
What is a “Wireless Server?”
12
How Others Provide Wireless Server Solutions
13
The Mobile Server Plus Solution
13
Introduction to Service Development for MS Plus
15
Service Development Overview:
16
Primary Server functions
16
Request Processing Overview
17
Request Processing
18
Request Initiation
18
Request Translation
18
Request Processing
19
Dispatching
19
Request Processor Errors
19
MS Plus Service Overview
20
Service concepts
20
Client-Visible Objects
20
Channels and Services
20
Generating Customized Dynamic Content
20
Device Attributes
21
Scripting with MSML
21
Querymaps and Content Templates
21
Variables
21
MS Plus Service Overview – Devices and Languages
22
MS Plus Channels & Screens
22
Screens
23
Querymaps
23
Content templates
24
Binaries
24
Service Requests
25
Service Commands
26
Service Sessions
26
Service Transports
27
Values & Variables
29
Variable Data Types
29
Variable Data Access
30
Name of Variable
30
MS Plus Variable Naming Conventions
31
Variable Categories
32
User (Permanent) Variables
32
User Information Variables
32
Session Variables
32
System Variables
33
Setting and Deleting Variables
33
Session Management
34
Overview
34
Timeout
35
Session Creation
35
Session IDs
35
Anonymous sessions
36
MSML
36
XML
36
How MSML differs from standard XML
37
Introduction to MSML Tags
38
Document Tags
40
Contextual Tags
41
ATTR
41
VARPAIR
42
PARAM
42
Boolean Logic Tags
43
Overview
43
Basic Boolean Logic
44
Boolean Operator Tags
44
Control Flow Tags
45
String Manipulation Tags
45
Data Access Tags
45
Data Manipulation Tags
46
Reference Tags
46
Arithmetic Tags
46
Subroutine Tags
47
Output Tags
47
MS Plus System Access Tags
47
Using MSML Tags
48
Syntax
48
Open and Close Tags
48
Tag Attributes
48
Variables
48
Entities
49
Top-level tags
49
Tag Content and Body Tags
49
Contextual Tags
50
Tag Attributes
51
Overview
51
Setting attributes
51
Language Issues
52
Language Neutral Text Format
52
Overview
52
Character sequences
53
Alternate text
54
The OPT tag
54
Authentication & Access Control
56
Authentication
56
Access Control & Validation
56
Access Levels
57
Setting Access Levels
58
Data Accessors
59
Data Access Tags
59
Data Accessors: Stores
60
Data Accessors: Flow
60
SLIDE 45 (end of slide pitch)
61
MSML Tags Organized by Functional Groups
62
Overview
62
Effective Coding Practice
63
Key Concepts
63
Separate content layout from query logic
63
Avoid overloading variables
63
Design for single-purpose content templates
63
Use “sub-routines” and “macros” where appropriate
63
Use session and permanent variables only where appropriate
64
Avoid confusion
64
Specify the navigation first
64
Use valid XML syntax
64
Minimize parameter usage
64
Only use SQL for what it's good for
64
Choose the tag that is the best fit
64
Format for readability
65
Develop a prototype
65
Naming conventions
65
Use lower case characters
65
Variable and channel object names
65
Using Comments and Headers
66
Comments
66
Headers
66
Example querymap header comments:
67
Example content template header comments:
67
String Manipulation Tags
69
SUBSTRING Tag
69
STRINGFORMAT Tag
70
SIZE Tag
70
SPLIT Tag
71
SUBSTITUTE Tag
71
MATCH Tag
72
Development Tags
73
Overview
73
COMMENTS Tag
73
REPORT Tag
73
Control Flow Tags
74
Overview
74
WHILE Tag
74
FOR Tag
75
FOREACH Tag
76
SWITCH Tag
77
OPT Tag
78
Processing other documents
78
FORWARD Tag
78
Macro Tags
78
Query Tags
79
FTP Tag
79
Comparison Tags
80
General comparisons
80
Testing variable definition
81
Subroutine Tags
82
Output Tags
83
MS Plus System Access Tags
84
Direct Calls to Java Classes Tags
86
Overview and disclaimer
86
Effective Coding Practice
88
Key Concepts
88
Separate content layout from query logic
88
Avoid overloading variables
88
Design for single-purpose content templates
88
Use “sub-routines” and “macros” where appropriate
88
Use session and permanent variables only where appropriate
89
Avoid confusion
89
Specify the navigation first
89
Use valid XML syntax
89
Minimize parameter usage
89
Only use SQL for what it's good for
89
Choose the tag that is the best fit
89
Format for readability
90
Develop a prototype
90
Naming conventions
90
Use lower case characters
90
Variable and channel object names
90
Using Comments and Headers
91
Comments
91
Headers
91
Example querymap header comments:
92
Example content template header comments:
92
Querymaps, Content templates, and Binaries
93
MSML Tags Reference
96
AND
96
ATTR
97
BODY
97
BREAK
98
CALL
98
CANCELEVENT
99
CASE
99
COND
100
CONTENTTEMPLATE
100
DATE
101
DATEADD
102
DATEDIFFERENCE
103
DATEFORMAT
105
DATESUBTRACT
107
DECREMENT
107
DELVAR
108
DISPATCH
109
DO
109
DOPT
110
ELSE
110
EQUALS
111
EXPRESSION
112
FALSE
113
FILEGET
113
FOR
114
FOREACH
115
FORWARD
116
FTP
117
GREATERTHAN
118
HTTP
119
IF
120
IN
120
INCREMENT
121
ISEMPTY
121
ISNULL
121
ISTYPE
121
LESSTHAN
122
LIST
122
LISTADD
123
LISTJOIN
123
LISTREMOVE
124
MAP
124
MAPKEYS
125
MATCH
126
NOT
127
NUMBER
127
NUMBERFORMAT
128
OPT
130
OR
132
PARAM
132
PARAMDEF
133
QUERYMAP
133
REFBINARY
134
REFCONTENT
135
REFLOGOUT
136
REPORT
137
RETURN
137
ROUTE
138
RUNQUERYMAP
140
RUNTEMPLATE
141
SETEVENT
142
SETVAR
143
SIZE
143
SPLIT
144
SQL
145
STRING
146
STRINGFORMAT
146
SUBSTITUTE
147
SUBSTRING
148
SWITCH
148
THEN
150
TRUE
150
VARDEF
151
VARPAIR
151
VCPROCESS
152
WHILE
152
MS Plus Configuration
154
Configuration Decisions
154
Configuration Devices
154
Configuration Networks
154
Configuration Users
155

Special Terminology used in this Section

channel
a grouping of common functionality within a service

device
Users point of view: user’s communication device, such as, cell phone, pager, browser, etc.

display
the display screen on the user’s device

multiple CPUs
In a symmetric multiprocessing (SMP) operating system, its multithreading allows multiple CPUs to be controlled at the same time.

multitasking
allows concurrent, multiple streams of execution in the same program. Each stream processes a different transaction or message. Multithreaded programs must run in an environment that allows multiple operations (multitasking or multiprocessing).

multithreading
generally uses reentrant code (not modified during execution) so the same code can be shared (reentered) by multiple programs. Multithreading works well for certain applications:

1. Order processing: orders entered independently

2. Image editing: a compute-intensive filter works on one image, while the user works on another.

3. Audio/Video: create synchronized audio and video applications.

MS Plus
Mobile Server Plus

Request Processor (RP)
term that refers to two software components (Content Language Layer and User Request Handler) that perform request processing

query
To interrogate a database. Most queries require at least the data source, the selection criteria and the matching condition(s).

querymap
a MS Plus internal map of user’s search criteria based on the user’s request

screen
a MS Plus software name for optional querymap(s) and required content template(s) or binary(s): also, occasionally used to refer to the display on the user’s wireless device

server
the Mobile Server Plus

user
the people using the device(s), such as, cell phone, PDA, wireless modem, pager, browser, etc.

white space
blank character, tab character, or carriage return character

Introduction to Mobile Server Plus

This section will introduce you to the information you need to know to develop your own services to run on the Mobile Server Plus.

Mobile Server Plus is state-of-the-art server software that enhances communication with wireless devices, such as cellular phones, pagers, and mobile computers. Thus, MS Plus gives businesses a way to reach wireless device users, worldwide.

Wireless devices make possible the wireless Internet.

For many years, wireless networks were too slow (14.4 Kbps -19.2 Kbps). But, today the combination of new applications and faster transmission (up to 2.5 million bps) make the wireless Internet a practical reality.

Using MS Plus technology, you can automate and customize wireless content services, for the wireless Internet of the future. Think of your mobile wireless device in conjunction with the Mobile Server Plus as a mobile information system you can access from anywhere – without wires!

Wireless devices offer users many choices:

· Display sizes,

· Display presentation in color or black & white,

· Input methods,

· Form factors,

· Content languages,

· and more.

Now, businesses can use MS Plus to reach customers and employees with HTTP, SMS, email, and event-driven requests – regardless of the wireless devices used.

Plus, MS Plus can retrieve information from a database or remote sources using FTP, Telnet, and HTTP protocols.

This robust versatility, combined with ease of use, security, and reliability, makes the Mobile Server Plus the best solution for sending and receiving information to and from your wireless customers.

The Basics of Wireless Technology

What is a “Wireless Server?”

A “wireless server” communicates with telecommunications carriers to support wireless devices.

A wireless server interacts with wireless devices similar to the way a Web server interacts with a desktop computer.

When a device user makes a request a wireless server must:

1. Perform protocol handshaking with the telecommunications carrier,

2. Recognize and interpret the user’s request,

3. Obtain the requested information (content) from a database, Internet source, or an email message,

4. Format the requested information (content) into the correct wireless protocol, and,

5. Send the content to the telecommunication carrier that delivers it to the wireless device.

[image: image2.wmf]
Figure 1. Wireless Server Functions

How Others Provide Wireless Server Solutions

Typical wireless server solutions include multiple servers and complex filtering as described below.

Multiple Servers

Businesses use different ways to deliver content to their mobile customers. One temporary solution uses multiple servers to deliver content to wired and wireless devices. In this case, each server is dedicated to a single access method, either wired or wireless.

The content is usually drawn from a database.

· For wired access, the database information is retrieved and presented via HTTP and an HTML Web page.

· To send the same content to wireless devices, another server must access the same database, then format the data for each type of device, display, and content language.

This multi-server approach is hardware-intensive requiring large investment in hardware, development, implementation, and testing.

Complex Filtering

Another temporary way to reach wireless devices involves complex filtering.

In this method, retrieved Web pages are filtered (“scraped”) for content to deliver to a wireless device. But, … this means the following:

· The information sent to wireless devices is read-only, and

· Filters must be changed every time the Web page changes.

This approach is also hardware-intensive requiring large investment in hardware, development, implementation, and testing – it’s a fragile solution at best.

As wireless devices become more widely used, businesses want to do the following:

· Reach more mobile customers and employees,

· Avoid adding “kludge” solutions to their conventional server support, and

· Offer dynamic presentations with sound and video.

The Mobile Server Plus Solution

The Mobile Server Plus is a single server solution to communicate with both multi-protocol wireless and conventional wired devices.

With MS Plus you can:

· Transform Web content (HTML for Web browsers) for mobile device microbrowsers supporting HDML, HTML, and WML,

· Obtain content from multiple sources,

· Deliver content as either text or binary (video/sound) format,

· Add rich customer services to mobile users using XML files and data base data.

MS Plus solution for multiple devices uses only one set of logic, plus it’s scalable to support future formats and protocols.

SLIDE 2 SLIDE 3
Introduction to Service Development for MS Plus

As a developer, you will be developing querymaps and content templates (discussed later) to “program” the user services you design. Thus, you will interface primarily with the Mobile Server Plus software that processes user requests.
Figure 2 shows the major software modules comprising MS Plus software. Notice that Request Processing is handled by two modules: Content Language Layer and User Request Handler. In this Reference section, these two components are called the “Request Processor,” and abbreviated “RP.”

[image: image3.wmf]
Figure 2. Software Architecture

Service Development Overview:

Primary Server functions

The Mobile Server Plus fulfills two basic functions:

1. Load content into MS Plus from external sources.

2. Deliver customized content to multiple client devices and form factors, based on:

· Direct user requests (pull).

· Programmed events (push).

You will want to develop services that are both scalable and robust.

Request Processing Overview

Figure 3 shows how the wireless user interacts with the Transport Layer module, which interacts with the RP module.

Notice that from the User’s point of view, the Mobile Server Plus is invisible. The wireless device user simply makes a request and waits for the answer to display.

1. The wireless carrier invisibly handles transmission of the signals.

2. The signal arrives at MS Plus on physical wires (phone line, T1 line, twisted pair, etc.).

[image: image4.wmf]
Figure 3. Request Processing Overview

The Transport Layer software, generally speaking, detects incoming requests, formats them, sends them to the Request Processing Software (RP), then waits for the RP to answer.

Your programming causes the RP to perform the necessary actions to satisfy the user’s request and sends the answer to the Transport Layer, which sends the answer over physical wires to the carrier, which the carrier transmits the answer to the User’s device. All at blinding speeds!

Following are more details about the process of request processing.

Request Processing

MS Plus fulfills requests in four stages, as follows and described below:

· Request Initiation

· Request Translation

· Request Processing

· Request Dispatching

Request Initiation

MS Plus responds to requests from two sources, as follows:

1. The most common request source comes from a user via their client device (cell phone, pager, etc.) In this event, the Transport Layer uses the proper transport protocol, recognizes the request, and initiates request processing.

2. The second source of requests comes from MS Plus itself based on events you programmed. In this case, the server’s “event manager” initiates request translation and processing by simulating a request to the Transport Layer.

Request Translation

The Transport Layer accepts requests using a variety of transport protocols and formats. Whatever the protocol, the Transport Layer translates requests into a standard format. Thus, you don’t have to worry about transport protocol differences!
· Internally, MS Plus sets its variables to phrase the request in formats based on its raw transport, its request type, and a common command format. These variables represent the components of the raw request. The names and structures of these variables depend on the transport type because each transport protocol delivers equivalent messages in a different format. For HTTP, variables are set for header fields, the HTTP command used, and other parts of the request.

MS Plus uses an abstract request type
 to represent varying request formats that may be used across transports.

· For example, a “text keyword” request might be used by both an SMS phone and email client. This kind of request might accept a keyword in the body of the message followed by space-delimited parameters. Thus, MS Plus sets a set of variables based on translating a request into its request type.

MS Plus then performs user authentication, based on the login type of the transport.

· MS Plus may accept all requests (anonymous user) or verify the user via user ID and password. If sessions are being used, MS Plus attempts to connect ensuing user requests to the session object created on the initial request.

Finally, a request is translated into “command format.”

· MS Plus ultimately processes each request by running a command that typically sends output to the user’s device. The commands used most often are getcontent and getbinary, which send the specified objects. The variables set for this format are essentially the command name, and any additional parameters bound for this command.

Request Processing

After the Transport Layer finishes translating the request, the Transport Layer runs a command processor to process the request. In most cases, these processes format output for the user’s device.

· Some requests, however, may only cause MS Plus to take internal action, such as for timed events.
MS Plus has several command processors, each performing specific processes. You can easily create and incorporate new command processors for your own service needs.

Dispatching

The most common final phase of command processing is to dispatch the results to the user’s device.

· The command processor initiates this action by calling the dispatcher associated with the request. The dispatcher then prepares the output and sends it out through its associated transport.

Request Processor Errors

The RP reports internal processing errors to your local console.

· For example, if a non-Boolean value is passed when Boolean is expected, the RP reports an error to the calling program. If your programming doesn’t handle errors properly, users may see strange images or text on their device.

Sometimes, you may need to pass an error message to the user’s device.

MS Plus Service Overview

SLIDE 4
Service concepts

A common set of terminology is needed when discussing services that run on the Mobile server.

Client-Visible Objects

To a programmer, “client visible object” refers to an object that, when sent to the user’s device, causes an image to be visible to the user. (A programmer might call it a client visible object, but the user sees, a flight number, stock report, email message, whatever was requested.)

So, the ultimate result of your service is to retrieve, then send user-requested information to their device. MS Plus can send two types of “objects” to a client device, content screens and binaries, as follows:

1. Content screens:

A content screen is a text-based object that contains information to display on a client device. It may be plain text or in a formatting language such as HTML. A content screen usually contains information for one visible page, but in some cases (such as a WML) it may contain multiple pages. The content screen may contain any combination of static information, forms, or content.

2. Binaries.

A binary is a non-textual object such as a graphical image or a sound file, in a format that the client device can render to the user.

Channels and Services

To provide services to an end user, you must group a set of basic objects:

1. The first grouping is into channels. To create a channel, you group the objects necessary to generate screens and binaries. These objects may include formatting, logic, and content necessary to generate the client-visible objects. Channels tend to be defined by function, such as accessing news information or allowing the user to set preferences. A channel may have dynamic or static content associated with it.

2. The second grouping is into services. To create a service, you group channels together into an integrated set a user can access. MS Plus can simultaneously provide access to multiple services, each of which can have its own set of channels.

Generating Customized Dynamic Content

Like most Web servers, Mobile Server Plus can dynamically generate screens and binaries. Also, MS Plus will let you customize content based on the device that will receive it.

Device Attributes

Certain key device attributes let you customize processing, for example:

1. device type can represent a class of devices. The device type can be set based on user variables or on the raw request (“Useragent” header). Device type may determine how to format outgoing information or determine conditional processing.
2. language can help you specify content formatting.

Scripting with MSML

MS Plus gives you a set of special “MSML tags” that let you script functions. You can use these tags to phrase conditional logic, determine control flow, query databases, set or act on user settings, and fulfill various other functions.

Querymaps and Content Templates

You control the generation of content in two steps:

1. Set up the processing of one or more querymaps. Querymaps are MSML documents that perform procedural work that is independent of the user’s device and language. For example, a querymap might make a query to a SQL database for a news headline and story, or set user preferences based on the request.

2. Set up a content template to generate a content screen for the specific user device and language. Typically, a content template is a file in the destination content language intermingled with MSML tags to insert dynamic information. You can develop additional content templates to support multiple content languages and devices.

Variables

In the process of servicing a series of user requests, MS Plus maintains some state information.

· Some state information is significant only while the request is being processed;

· Some information is relevant during a “session,” when a user is actively using the service, and
· Some information must be maintained over longer periods.

MS Plus stores each piece of information as a variable, each of which can be retrieved based on its identifier name. An object, called a variable context, groups a set of these variables.

Variables can represent:

· User settings

· Request parameters

· Request headers and attributes

· Temporary variables for servicing a request

· Output data

· System information

MS Plus Service Overview – Devices and Languages

MS Plus information services must support many types of user devices, such as, cell phones, pagers, PDAs, desktops, etc. Moreover, MS Plus must support many device content languages, such as HTML, WML, HDML.

And since today’s global customers speak many languages, MS Plus services must support many spoken languages.

You, as a service developer, will likely want to tailor service(s) while leveraging existing code and presentations.

Internally, MS Plus uses the idea of:

· A device (a device name, or a named group of devices),

· A content language (device presentation), and

· A user’s spoken language.

MS Plus lets you create and manage the parameters for all of these ideas and tailor the system to your needs.

SLIDE 5
MS Plus Channels & Screens

While the Web is organized around files and directories, Mobile Server Plus is organized around a hierarchy of services, channels, and screens (querymaps and content templates).

Within MS Plus, you can group screens that work together or display similar information into channels within a given service. See Figure 4. Service/Channels/Screens Hierarchy below.

[image: image5.wmf]
Figure 4. Service/Channels/Screens Hierarchy

MS Plus can support many services, but for now, let’s discuss channels and screens.

Screens

In MS Plus software, a screen is divided into two parts, a querymap and a content template as follows:

· A querymap (optional) defines the processing of the request’s incoming (retrieved) data and the request’s outgoing (formatted) data that satisfies the request.

· A content template that defines how the retrieved information is displayed the on the user’s device.

Each screen must have a name. Each screen name may have several querymaps and content templates associated with it. Further, each screen name may have associated with it several device(s), content language(s), or natural language (s).

Figure 5 below diagrams the relationship between screen name, the querymap, and content template. In general, the querymap defines the format for retrieved (queried) data and the resultant output. The content template defines the format for the User’s display, in device content language.

Note that the data files represented by circles are conceptual only – data does not actually flow through the querymap or content template.

[image: image6.wmf]
Figure 5. “Screen” = querymap(s) + content template(s)

Querymaps

Querymaps are not always device-independent.

MS Plus converts content languages into different presentation languages, depending on user preferences. You can tailor querymaps by device, or content language. You can set up querymaps to use the functions of other querymaps for the same screen. Thus, querymaps look a little like object classes.

Querymaps are MSML documents. Within MS Plus we have defined a DTD (Document Type Definition) of tags that look like a scripting language. Typically, querymaps contain code that specifies the processing of request data and/or causes MS Plus to fetch data from some data sources for the user.

A screen does not require a querymap if:

· The screen specifies operation(s) solely on request data or data that’s always available, or,

· The screen represents a static display.

You can set up a querymap to cause a request to be “forwarded” to another screen in the service. Here, the RP stops processing (aborts) the current querymap at the forward and, if the new screen has an associated querymap, the RP resumes processing of that screen’s querymap at its start.

Also, you can set up a querymap to act as a subroutine for another querymap. In this case, when the subroutine is finished, the RP returns control to the calling querymap. A subroutine querymap is usually a special-querymap-with-general-logic functions.

Note: You are not allowed to “forward” from a subroutine querymap. If the subroutine querymap attempts a “forward,” the calling querymap is aborted and the RP returns an error condition.

Content templates

Typically, you set up a single content template per user device. However, since there may be presentation elements common to many screens in a service, you can place these presentation elements into a single file for use by several content templates.

Binaries (images, sound files, Java classes, etc.) can be static or dynamically created, usually by Java code called from the querymap.

Content templates are MSML documents. Further, content templates frequently contain other XML or SGML documents within.

Fundamentally, you can think of content templates as documents in device content language, with elements inserted to iterate or otherwise include data that were fetched by the screen’s querymap.

As with querymaps, content templates can use other content templates as a subroutine. In fact, querymaps can use content templates as subroutines, and content templates can use querymaps as subroutines
.
Binaries

Binaries are any non-textual information to be presented on the user’s device. Binaries can be images, or sound files, or Java classes, or…
 A binary is often a static file, but you can cause it to be dynamically generated by Java code or by requesting it from another server.

Look at Figure 6 below. Notice that the querymap is essentially a list of pointers based on the user’s request. These pointers point to:

· Data sources (local files, databases, Web and FTP servers).

· Variable names (where to store the retrieved data). These variables can be of any of type (types discussed later).

When the content template is processed, the retrieved data is placed into pre-programmed “holes” in the content template before sending the “client visible object” to the user’s device.

[image: image7.wmf]
Figure 6. From Data Sources to Variables to Content template via Querymap

SLIDE 9
Service Requests
MS Plus is request driven, with no default processing. In other words, without a request, MS Plus does nothing. Thus, the service code that you develop specifies everything that happens in processing a request.

Requests usually generate a response from the service back to the user, but not always. Requests come from many sources, such as an HTTP request, an email or SMS message, or an internal timed event whose time has come.

MS Plus converts all requests to a canonical (official MS Plus) format before processing.

The canonical format is represented by a set of variables in a variable context (a set of variables, usually organized logically).

MS Plus assigns incoming request data to both properly defined variables
 and transport-specific variables. This action places the request in a common framework, and preserves the request’s identity, in case your service must handle requests from different sources differently.

Ultimately, a “request” is a MS Plus command and its command parameters.

SLIDE 10
Service Commands

The command for a given request determines the server’s actions and how the request “flows” through the server.

MS Plus has a set of pre-defined commands. Each command is a class that extends Java’s GenericCommandProcessor. Using our API, you can develop more commands and plug them into the command framework.

In a typical service, your most used commands will be

· getcontent and

· getbinary.

MS Plus processes these two commands similarly. Each command is given a channel and screen name and causes a search for a querymap with that screen name that matches, as close as possible, the device, content language, and natural language for the user’s device.

If the command processor finds one, it runs the querymap, otherwise the command processor calls error:main. Once the querymap is run, these commands act as follows:

· getcontent looks for a screen template, finding the most specific one, and processes it, resulting in a body that can be returned to the device.

· getbinary looks to either:

· see if the querymap set the output of the request, or

· if no querymap was run, sets the most
specific binary file as output to the requesting device.

Now, both commands dispatch the requested output to the user’s device.

Other commands include:

· run – execute a querymap but dispatch nothing.

· logout – acts like run then terminates user’s session.

· getstatic – read static file without looking for a querymap to run.

SLIDE 11
Service Sessions

MS Plus always processes requests in the context of a session, which manages information across multiple requests.

Session information is either associated with a unique user or data that you choose to maintain.

Usually, subsequent requests from the same device are attached to the same session, but this is not a requirement of the server. You have flexibility in how you link a subsequent request to the same session (more at authentication).

SLIDE 12
Service Transports

When the user presses a device button, the user generates a request that is received by the MS Plus software, called the Transport Layer. (See “Transport Layer” in the software architecture Figure xx below.)

The Transport Layer “listens” for requests and dispatches outputs to users’ devices. Each transport can be one of the following:

· listen-and-dispatch,

· listen-only, or

· dispatch-only.

[image: image8.wmf]
Figure 7a. Software Architecture

The transport listener accepts a request in its transmitted format and transforms it into:

· the MS Plus command to run,

· the command’s parameters, and

· transport-specific variables the service needs to satisfy the request.

The Transport Layer then submits the transformed request to the MS Plus thread pool manager, which assigns the request to a thread to run.

MS Plus currently uses four transport categories:

· HTTP

· SMS

· Email

· Timed Event

Some categories support different implementations of the same basic transport. For example, MS Plus can receive email as direct SMTP transactions or poll a POP3 server. In both cases, MS Plus treats each incoming email message as a request.

SLIDE 13
Values & Variables

During a user’s session, the Mobile Server Plus uses variables to maintain information for users and requests. These variables help accomplish both simple and complex channel
 development.

The Mobile Server Plus uses several variable categories discussed herein.

· User (permanent) variables

· Request variables

· Session variables

· System variables

· Output variables

· Language variables

NOTE: Variable names may include any standard case-insensitive or special characters except the colon (:). (MS Plus reserves the colon as a delimiter.) Variable names must contain at least 1 alpha character.

As a Service Developer, you may create other variables to satisfy your needs.

Variable Data Types

MS Plus stores data in variables in the following primitive data types:

· Number values can be of arbitrary length, fixed or floating-point, single or double precision.

· String values are standard Java strings.

· Boolean values are either true or false.

· Date values represent the date and time in the server’s time zone. You can create a date value from a string and indicate a particular time zone, but internally it will be converted to match the server’s time zone.

· Lists are 0-origin arrays of values

· Maps contain name/value pairs of any data type.

· XML nodes are strings previously parsed as an XML tree, which can be queried, subsetted, or otherwise operated upon.

· Binaries are arrays of bytes, the only operation you can perform on binaries is to query size (in bytes).

· Specials are values (internal objects or your own “magic values”) you can pass, but there are no MSML tags to manipulate them.

SLIDE 14
Variable Data Access

To access variables, you must place[* and *] around the name, for example:

[*zipcode*]
List types and map types let you assign arbitrary complexity, with levels separated by colons, for example:

[*itineraries:1:legs:0:flights:2:number*]

Also, you can nest variable substitutions:

[*request:command:parameter:[*index*]*]
[*[*end-var*]*]

Name of Variable

You access variables by using their names. Again, variable names may include any standard case-insensitive or special characters except the colon (:). (MS Plus reserves the colon as a delimiter.)

By convention, we name MS Plus variables using a hierarchical “tree structure” scheme, as shown in Figure 8, which shows a 3-level hierarchy.

[image: image9.wmf]
Figure 8. Typical Tree Structure Hierarchy

Colons (‘:’) delimit each level in the hierarchy. The following shows variable names versus value, based on Figure 3 above.

Name used to Access Variable
Value Retrieved
from Level

[*A*]
A
1st

[*A:1*]
A1
2nd

[*A:2:3*]
A23
3rd

[*B:2:3*]
B23
3rd

Figure 3 below shows, via Perforce
 screen, the 3-level hierarchy for the variable called request:transport:address. Notice that the variable’s name is represented on the left-hand side while its actual value shows up on the right-hand side.

MS Plus Variable Naming Conventions

Now, let’s discuss the naming conventions for variables used by MS Plus.

The first level of the hierarchy is called the prefix. The prefix denotes the category of variables as shown in the table below (these prefixes are reserved by MS Plus):

Prefix (category)
Used for these types of variables:

user:
permanent user preference variables and user information variables

request:
raw request attributes (all un-translated request information)

session:
session variables, kept during each user/device session

system:
system variables (e.g. system time)

output:
output variables (used by MS Plus to pass output information to the appropriate dispatcher).

language:
language-specific variables (see Language Issues, page 52).

You may create other prefixes to set up other categories of variables as necessary, based on device requests and querymaps.

NOTES:

· If a variable does not fit into one of the above categories, give it a name without a category prefix. Examples:

[*variable1*] [*abc*] [*index4*]
· Name session and user preference variables with channel prefixes
, as in:

· session variables

--->
session:<channel>:<varname>
· user preference variables

--->
user:var:<channel>:<varname>
· Name user information variables as
--->
user:info:<varname>
Variable Categories

User (Permanent) Variables

The Request Processor (RP) maintains user:var: variables permanently, so they persist across MS Plus instances. Permanent variables are also shared across sessions and devices.

User Information Variables

All information in the user information table (user_info) is prefixed with user:info:

The names of the variables after user:info match the column names in the user_info database. See Figure 4 below. You can set new values for these variables, and they will be saved in the user_info table.

Session Variables

When a device user logs in to the system, the RP creates a session (a collection of session variables) to track requests and maintain state across requests.
The RP provides for a single user that may use multiple devices, such as: cell phone, pager, browser, etc. Thus, if a single user, using more than one device at the same time, accesses the system, the RP creates and maintains separate sessions for each user device. Permanent variables, however, will be seen across all devices.

The RP maintains all session: variables for the entire session. When a session ends, its variables are deleted.

A session starts when the user logs in and lasts until the user logs out or, until MS Plus “times out” the session. (MS Plus automatically creates anonymous sessions for any requests not already associated with an active session.) MS Plus times out sessions based on:

· The transport’s timeout setting based on the service being accessed, and

· The time elapsed since the last user request for that session.

The telecommunications provider typically sets the transport’s time out setting. Timeout times vary; for example, the timeout setting for an Internet browser using HTTP is typically longer than for a cell phone using SMS
.

You can find more information at Session Management, page 34.

System Variables

Global system variables use the system: prefix.

For each user request, MS Plus dynamically generates values for many system variables used for internal “housekeeping.” For example, every time the user makes a request, the timeout timer resets (if the user “times out” for lack of activity, the user is automatically logged out).

You may access system variables but do not modify them because any modification will cause unpredictable system behavior. The following table shows some typical system variables (variable names reserved by MS Plus):

Value Name
Type
Description
Example Value

system:timestamp
Date
The current date/time.
Fri Sep 15:16:11: PDT 2000

system:host
String
The hostname of the machine running the server.
“jf1”

system:property
Map
Map holding values of all Java properties. These values contain information regarding the system running MS Plus and the Java virtual machine.
Example:

java.version =

“1.2.2”

Setting and Deleting Variables

Use the SETVAR tag to set querymap or content template variables. The SETVAR tag attributes cause the RP to override variable default attributes.

You can set the value for the variable in the body. Or, if you use the value’s attribute, make sure its value refers to a source variable to copy from. The new variable’s attributes will default to those of the source variable, unless overridden by the SETVAR tag.

In the example below, if the source variable (my-date) is a date type, the type = ‘string’ will override the default type for my-date and store the date as a string type in my-var.

<*setvar name=‘my-var’ type = ‘string’ *>

[*my-date*]

<*/setvar*>

Take care when setting any variables significant to general MS Plus processing.

Again, do not set system variables because any modification will cause unpredictable system behavior.

If you set request or output variables incorrectly, you could cause errors in transaction processing. Only set request/output variables in special circumstances. That is, general temporary variables should not be set under the request: prefix. They should be set at the top level (no prefix) or under a non-reserved prefix.

The following example shows how to set a permanent user variable, my-var.

<*setvar name=‘user:var:my-var’*>

My permanent variable.

<*/setvar*>

See also: SETVAR in the MSML Tags Reference, page 96.

You can delete variables using the DELVAR tag. The following example shows how to delete the permanent variable, my-var.

<*delvar name=‘user:var:my-var’/*>
See also: DELVAR in MSML Tags Reference, page 96.

Session Management

Overview

The SessionManager manages a group of sessions associated with a service.

There is one session varcontext per user per device. For example:

· If a user is logged in on an HTML browser and on a phone, the user will have two sessions.

· If the user is logged in more than once on a browser (same window or separate windows, even separate instances of the browser), the user will be connected to the same session.

For the rest of this discussion, the term session will refer to a user's session varcontext.

The following variables are set in each session:

Value name
Type
 Description
 Examples

session:id
String
Session identifier

session:log-id
String
Holds an identifier string to be used as part of the primary key when logging the session. It is assigned on session creation and stored as a session variable until it is again used to log the session closure.

Timeout

MS Plus automatically times out a session after a period of inactivity. The timeout period is specified in the transport configuration, with the key sessionTimeoutPeriod. The default timeout period is 10 minutes.

The MS Plus SessionManager runs in a polling loop, checking for timed-out sessions every time the polling period has expired. The polling period defaults to two minutes, but you can change the default on the service level. To change it, use the key sessionPollingInterval in the service configuration.
Session Creation

MS Plus creates a new session whenever a request comes in and if a current session is not found for the passed session id, or, if it is a login request. The exception is if it is an anonymous request, and anonymous sessions are disabled (see Anonymous Sessions below).

A login request is when the variable request:auth:login-id or request:auth:passive-login-id is set in the request, optionally accompanied by the password variables. See Authentication & Access Control, page 56, for more info.

· If the request is a login request and the login succeeds, MS Plus creates a session associated with the user. Also, the request is given the same access level as the user.

· If the login fails, MS Plus routes the request to the main:invalid-login querymap.

· If a request comes in with no session ID or its session ID does not correspond to any active session, MS Plus creates an anonymous session (as long as anonymous sessions are not disabled); the request is given the lowest access level.

Session IDs

MS Plus uses session IDs to match requests with sessions. The session ID is passed to MS Plus in the request’s URL after MS Plus has set up a session.

The session ID can have several formats, which can be set as values for the sessionIdFormat key in the transport configuration.

· userId – (default). MS Plus uses the user's ID as the session ID. This setting allows bookmarks to work, as follows:

If user has previously book-marked a page when logged in, they can use the bookmark to access the page.

If user is logged in already, user is attached to their current session.

If user is not logged in, user can access the page, if the page has a public access level.

· random- MS Plus uses a random ID for the session ID and in the URLs. This offers more security than a plain user ID, since it is harder to “fake” a request to access another person's active session.

· none - No session ID is used. MS Plus will display a “null” in the URL for the session ID. Previous sessions cannot be attached, unless every request is a login request. Therefore, a new anonymous session is created with every request.

Anonymous sessions

When a transport is set to a loginType of anonymous, MS Plus performs no logins on services run on this transport; login requests are treated the same as all other requests.

This means all users are “anonymous users,” just as if they were interacting with a normal web server. Thus, MS Plus creates only anonymous sessions on this transport.

The request is not given any access to permanent variables. Yet it is, by default, given access to session variables.

Every anonymous user has their own session, separate from the other anonymous users.

Anonymous sessions are subject to the same timeout periods as normal sessions.

Anonymous session IDs are random IDs.

You can turn OFF anonymous sessions for a transport. Just set the transport configuration, anonymousSessions, to FALSE. All requests will still be anonymous, but no sessions will be created.

MSML

Our MSML is a procedural mark-up language that is closely related to standard XML. First, let’s review standard XML.

XML

XML, a subset of SGML and the basis of HTML, is a language for describing structured data. HTML, using predefined tags, defines how elements are displayed. XML, using tags defined by the developer, defines what those elements contain.

XML tags (also known as elements) are bracketed by open and close angle-bracket characters (<>).

Each XML tag can have attributes
 (name=value strings within angle brackets) and content (text or other tags).

· Tags with content include a pair of open/close tags as follows:
open tag looks like <tagname>,
close tag looks like </tagname>.

· Tags without content include a single tag of the form <tagname/>.

It is illegal to have an open tag without a close tag, or vice versa. Tag nesting is strict (when you close a nesting tag, you close all the tags within it).

Typically, with XML, a DTD (Document Type Definition) defines:

· allowed tags,

· tag attributes (and whether required),

· presumed value not present, and

· range of values for each attribute.

Also, the DTD specifies what, how many, and in what order tags and/or plain text can be in the tag’s content.

MS Plus does not currently use an actual DTD, however, there are grammar rules for the tags in querymaps and content templates.

SLIDE 16
How MSML differs from standard XML

While standard XML uses plain angle brackets (<…>) to delimit tags, MSML uses angle brackets plus asterisks (<*…*>). Thus, a content template can use both MSML and HTML or an XML-based language together and allows MS Plus to differentiate between the procedural parts (MSML) and the data parts. Also, the only language used in querymaps should be MSML.

MSML also differs from standard XML because MSML can specify tag attributes via nested tag. (See the ATTR tag.)

SLIDE 17
Introduction to MSML Tags

The rest of this document discusses the special Mobile Server Plus tags, called “MSML” tags. The discussion is divided into four sections; three more sections follow this one, as follows:

· Using MSML Tags, page 48
· MSML Tags Organized by Functional Groups, page 62
· MSML Tags Reference, page 96 (Alphabetized tag list by name)

As mentioned under Querymaps and Content Templates, page 21, querymaps and content templates are XML documents with a DTD
that forms a kind of scripting language.

In MSML tags, white space is significant, or not, as with standard XML. However, you must be careful with white space in content templates. For example,

The RP evaluates MSML tags and always produces some sort of value.

· In a querymap, these values are usually ignored unless the tag is within another tag, causing evaluation of the containing tag.

· In a content template, these values are typically
concatenated to form the result (this is done by the MS Plus reserved tag, CONTENTTEMPLATE, that bounds a content template, so this is not a special case).

Text elements in the XML tree are their own value. However, if the text element contains a variable access, the text element may evaluate to a list of values. For example, the text element,

<p>[*boolean_variable*]</p>

evaluates to a three-element list value as follows:

<p>

the value of boolean_variable, and

</p>

MSML tags fall into several categories, discussed briefly in the order below. For complete technical details on how to use these tags, see Using MSML Tags, page 48 and MSML Tags Reference, page 96.
· Document Tags

· Contextual Tags

· Boolean logic Tags

· Control flow Tags

· String manipulation Tags

· Data access Tags

· Data manipulation
 Tags

· Reference Tags

· Arithmetic
 Tags

· Subroutines Tags

· Output Tags

· MS Plus System Access Tags

SLIDE 18
SLIDE 19
Document Tags

Every XML document needs a root tag
. Thus, you must surround the body of content template and querymap files with the appropriate parent tag (CONTENTTEMPLATE or QUERYMAP, respectively). The tags, QUERYMAP and CONTENTTEMPLATE, are both used by the RP.

SLIDE 20
Contextual Tags

MSML contextual tags are a special MS Plus construct. These contextual tags let you operate on the containing tag. In other words, you can use contextual tags to modify the containing tag of the appropriate type.

You must place the “content” of the contextual tag between <*BODY*> and <*/BODY*>. (BODY tags are optional when no other contextual tags are present.)

NOTE: Some control flow tags have special tags analogous to BODY, but called something else (FOR, FOREACH, WHILE, etc.) to conform to programmer’s expectations from other languages.

The three contextual tags are: ATTR, PARAM, and VARPAIR, discussed below.

ATTR

ATTR is a contextual tag that lets you specify an attribute value of the containing tag, using the full set of MSML tags provided by MS Plus.

Example: In regular XML, an attribute can only be specified as a string. This requires you to define a variable to contain the value, then use that variable in the attribute value, as follows:

<*setvar name=“end”*>

<*expression*>

<*size*>

[*list*]

<*/size*>-1

<*/expression*>

<*/setvar*>

<*for start=“0” stop=“[*end*]”*>

However, with the ATTR tag, you can express the above example, without using the variable namespace, as follows,

<*for start=“0”*>

<*attr name=“stop”*>

<*expression*>

<*size*>

[*list*]

<*/size*>-1

<*/expression*>

<*/attr*>

VARPAIR

Use the VARPAIR contextual tag when you need both a name and a value for a containing tag.

Example

<*!-- Passes cgi-variables. Uses current transport settings for scheme, host, and port --*>

<*refcontent

name=‘main:show-me’*>

<*varpair

name=‘my-cgi-param-1’*>apples

<*/varpair*>

<*varpair

name=‘my-cgi-param-2’*>oranges

<*/varpair*>

<*/refcontent*>

You can use a TYPE attribute for the VARPAIR tag when you need to convert a value from one type to another. The TYPE attribute forces the tag’s content to the specified type.

PARAM

Use PARAM contextual tag when you need only a value as one of a set of parameters for a containing tag.

Example
<*sql id=‘my-query’*>

<*body*>

select * from my_table

where name = ? and type = ?

<*/body*>

<*param*>Paul<*/param*>

<*param*>Engineer<*/param*>
<*/sql*>

You can use a TYPE attribute for the PARAM tag when you need to convert a value from one type to another. The TYPE attribute forces the tag’s content to the specified type.

SLIDE 21
Boolean Logic Tags

Overview

A set of Boolean tags provides Boolean logic so you can do the following:

· Use Boolean conditions necessary for control flow tags.

· Base Boolean tags on variable values.

· Use Boolean tags in both querymaps and content templates.

All conditions must be bounded by COND contextual tags, except COND tags are optional for the IF tag.

· Use AND and OR tags to perform standard Boolean logic on their children to produce Boolean values. MS Plus stops evaluation as soon as the result is obvious (ex: FALSE for AND or TRUE for OR).

· Use TRUE or FALSE to produce the Boolean constants.

· Use EQUALS, GREATERTHAN, or LESSTHAN to perform comparisons between two values (specified as VALUE1 and VALUE2 attributes) as appropriate to the types of the two values.

If one of the values is a number and the other a string, the RP automatically converts the string to a number, if possible. The RP makes no other automatic conversion . However, you can force a conversion by specifying the VALUE1 and VALUE2 attributes with ATTR tags that have TYPE attributes as follows:

· ISNULL: evaluates as true if body/content contains a null value.

· ISEMPTY evaluates as true if its body/content contains a null value or a list or map with no elements, or a string with no characters.

· VARDEF evaluates as true if the specified variable is defined (not null).

· ISTYPE evaluates as true if it’s of a particular type. This is useful where an HTML form provides multiple values for the same CGI parameter, where you need to see if that parameter is a list or a scalar value.

Note: ISNULL, ISEMPTY, and VARDEF all check for a null, but in slightly different self-documenting ways.

Basic Boolean Logic

The IF tag is the most basic tag that uses conditional logic. Based on the Boolean condition specified by the first child tag, the RP processes the tags in its embedded THEN clause. If the condition is false, and an embedded ELSE clause exists, the RP processes any tags found in it.

<*if*>

<*cond*>

<*true/*>

<*/cond*>

<*then*>

<*report

type=“info”

title=“Boolean report”*>True is true!

<*/report*>

<*/then*>

<*/if*>

See also: IF, COND, THEN, ELSE.

Boolean Operator Tags

The AND and OR tags cause the RP to perform logical operations on Boolean values. These tags can contain two or more children, and may be nested. The NOT tag negates its child’s Boolean value.

<*if*>

<*cond*>

<*or*>

<*not*><*true/*><*/not*>

<*false/*>

<*/or*>

<*/cond*>

<*then*>

<*report

type=“info”

title=“Boolean report”*>Condition is true!

<*/report*>

<*/then*>

<*else*>

<*report type=“info”

title=“Boolean report”*>The condition is false!<*/report*>

<*/else*>

<*/if*>

See also: AND, OR, NOT.

SLIDE 22
Control Flow Tags

MS Plus provides fairly standard mechanisms for accomplishing flow control, as follows:

IF
Based on a Boolean condition, change program flow.

WHILE
Loop while a Boolean condition remains true (in a nested DO).

FOR
Iterate over a range of numbers, using START, STOP and MAX attributes to control the iteration.

FOREACH
Iterate over one or more lists, stepping through multiple lists in lock-step.

SWITCH
A multi-way branch switch, using string equality or regular expression matching.

FORWARD
Use in querymaps to immediately begin processing a different querymap, and its corresponding content template.

SLIDE 23
String Manipulation Tags

Strings are an important data type in MS Plus because string is the default data type for variables. You can use the following tags to accomplish the following:

SUBSTRING
Extract a portion of the string (substring) in its content, returning that portion as its value.

SPLIT
Split a string into a list of values based on a delimiter string or regular expression match.

MATCH
Compare (match) one string with another and branch if not equal.

SIZE
Determine the size of a passed value.

STRINGFORMAT
Trim leading and trailing white space, uppercase / lowercase, limit length (w/ or w/o trailing ellipsis), or pad the string.

SUBSTITUTE
Perform string-for-string substitution, or apply one or more regular-expression substitutions.

SLIDE 24
Data Access Tags

MS Plus provides four standard ways to fetch or store data, as follows:

SQL
Query a JDBC-compliant database using the full power of the MS Plus tag set, including loops, conditionals, language-selectors, etc.

FILEGET
Load a file from the file system into a variable.

FTP
Either obtain a directory listing, or fetch a file into a variable.

HTTP
Get or post information to an HTTP server, specifying URL, query data, and headers.

SETVAR
Set or create variables.

DELVAR
Set a variable’s value to null (deleted).

VCPROCESS
Invoke the “process” method of a Java class that implements the VarContextProcessor interface. VCPROCESS does not pass returned values, if any.

SLIDE 25
Data Manipulation Tags

You can use the following tags to manipulate or create non-string data types as follows:

NUMBER
Convert a string to a number.

NUMBERFORMAT Convert a number to a string with formatting.

LIST
Create a list using PARAM tags.

LISTJOIN
Convert list elements to a string.

LISTADD
Add elements to a list.

LISTREMOVE
Remove elements from a list.

SIZE
Determine size of multi-element data types.

MAP
Create a map value using VARPAIR tags.

MAPKEYS
Create a list of all key names of a given map.

DATE
Convert a string to a date.

DATEFORMAT
Create a string from a date, according to your specified format

DATEADD
Adjust elements of a date.

DATESUBTRACT
Adjust elements of a date.

DATEDIFFERENCE
 Compute the difference in two dates.

SLIDE 26
Reference Tags

Reference tags give you a way to operate on a particular item in a service (e.g. a content screen, or binary). Internally, reference tags are command-associated (for example, REFCONTENT uses the command getcontent).

In theory, reference tags give you a transport-independent way of addressing service elements. In current practice, REF tags only produce URL’s for use with the HTTP transport. This will change as MS Plus evolves.

Within REF tags, you can use VARPAIR tags to specify values to pass as variables to MS Plus after the reference is followed.

REFCONTENT
Runs the getcontent command against the service element.

REFBINARY
Runs the getbinary command.

REFLOGOUT
Runs the logout command, which behaves like getcontent then terminates the session.

SLIDE 27
Arithmetic Tags

MS Plus provides three arithmetic tags that let you do the following:

INCREMENT
Add 1 to a number variable.

DECREMENT
Subtract 1 from a number variable.

EXPRESSION
Convert everything within the tag to a string, pass it to an expression parser, which converts the string to numbers, and operates on them. The result is a number.

EXPRESSION provides several useful functions beyond basic math such as, SIN, COS, MAX, MIN.

SLIDE 28
Subroutine Tags

Besides serving as service elements, querymaps and content templates can also act as subroutines for other querymaps or content templates.

RUNQUERYMAP
Call a querymap with optional PARAM tag(s).

RUNTEMPLATE
Call a content template with optional PARAM tag(s).

RETURN

Specify the querymap’s return value. (Missing = null.)

When running a querymap or content template, you can specify a different content language and/or device to use to locate the subroutine.

If you do not specify the name of the querymap/content template to run, the call acts similar to a superclass call. Here you can write special code for a particular device, then run the device-independent
code while logically grouping the functionality via the same base screen name.

SLIDE 29
Output Tags

MS Plus supports two output tags that let you do the following:

DISPATCH
Send data via specified transport’s dispatcher.

REPORT
Generate the same reports that MS Plus generates.

SLIDE 30
MS Plus System Access Tags

You can use the following “MS Plus System access” tags to:

SETEVENT
Create a timed event to run a specified querymap.

USE SETEVENT WITH EXTREME CARE
.

CANCELEVENT
Delete a timed event.

CALL
Access any Java object whose handle can be obtained.

VCPROCESS
Instantiate a Java class and execute its process() method.

ROUTE
Cause the transport (from which the request initiated) to send the request to a different server. Use primarily for creating a gatekeeper service.

SLIDE 31
Using MSML Tags

Syntax

Mobile Server Plus gives you a practical set of tags to accomplish functional and formatting tasks in content templates and querymaps. The following conventions apply to using tags in content templates and querymaps.

Open and Close Tags

The simplest tag structure is a single tag with no body (specified with an ending close slash in the open tag):

<*tag/*>

Usually, tags are opened with an open tag, and closed with a close tag. The characters between the two tags are the tag’s “body”.

<*tag*> … <*/tag*>

Tag Attributes

You can associate attribute values with a tag in one of two ways. The first (most common) way is to assign tag attribute values inside the open tag as shown below:

<*tag

attrname1=‘attrvalue1’

attrname2=‘attrvalue2’*>

<*/tag*>

The second way is to assign tag attribute values with the <*attr*> tag, discussed later.

· NOTE: To avoid confusion, coding conventions for MS Plus encourage using the following:

single quotation marks for MSML tags attribute values,

double quotation marks for content language tags (for example HTML).

Variables

The syntax for server variables is similar to tags. For example:

 [*my-variable*]

will evaluate to the value of my-variable.

You can use variable references in tag bodies or attributes, and you can nest them as in:

 [*var-[*one*]*]

In this example, if the variable one equals “1”, then the result will be the value of variable var - 1.

Entities

If you want entities to be delivered to the client device, specify them normally so they will be passed through.

Example 1: (will work, but not the best specification)

&*quot;
Example 2: (preferred specification)

[*language:quote*]
If you want entities to be interpreted (parsed) by MS Plus, give them a prefix of the characters &*. For example, MS Plus replaces the special entity &*ast; with the language-specific variable language:asterisk.

Top-level tags

You must surround the body of content template and querymap files with the appropriate parent tag (CONTENTTEMPLATE or QUERYMAP, respectively).

Tag Content and Body Tags

A tag can contain content, defined as text and/or other tags, between its open and close tags. It is important to note that content is a distinct term from a tag’s body.

Most tags act primarily on its body, which can be an arbitrary mix of text, variables, or other tags. This is sometimes the same as a tag’s content, but not always. MS Plus automatically evaluates a tag’s body, processing any tags and replacing variable references, and then passing the results to the tag for further action.

A good example is the SQL tag. Here is a simple case:

<*sql*>

select * from pauls_rockin_table

<*/sql*>

In this case, the SQL query and white space surrounding it is both the content and the body of the tag.

Here is a more involved case:

 <*sql*>

<*body*>

select ?, ? from pauls_rockin_table

<*/body*>

<*param*>[*first-select*]<*/param*>

<*param*>[*second-select*]<*/param*>

<*/sql*>

Here, the tag’s context includes white space, a BODY tag, and two PARAM tags. The body is enclosed in the nested body tag.

Contextual Tags

The BODY and PARAM tags in the previous example are contextual tags. They have significance to its parent tag, <*sql*>.

Each tag has a set of accepted and required contextual tags. If you use an unexpected contextual tag or omit a required contextual tag, you will get an error.

So, how does MS Plus determine whether a tag’s content should be evaluated for contextual tags or as a body?

We could have used rules that allow only contextual tags in the immediate body of another tag, but some tags have no need for contextual tags, other than the BODY tag. Therefore, we developed a set of rules to allow this common case to be convenient.

Most tags expect a body.

· For these cases, if a BODY tag is found in a tag’s content, the content will be interpreted as all contextual tags, as in the second SQL example. If a BODY tag is not found, the tag’s content will be treated as if it were in a BODY tag. Contextual tags inside the body will not affect the immediate parent tag.

However, some tags do not expect a body.

· In this case, if a BODY tag is found, you will get an error.

· Otherwise, the content will be interpreted as all contextual tags (or tags returning contextual tags). If another tag, variable reference, or string is found in the content, MS Plus will report an error and discontinue processing.

NOTE: There are two exceptions: the BOOLEAN expression of the WHILE and IF tags, which are supported in the direct body and in a recommended COND tag.

Contextual tags may also be conditionally included. In the following example, the second VARPAIR contextual tag is only used if the variable value2 is defined.

<*http action=‘http://www.funkysite.com/runme’*>

<*varpair

name=‘cgivar1’*>[*value1*]

<*/varpair*>

<*if*>

<*cond*>

<*vardef

name=‘value2’/*>

<*/cond*>

<*then*>

<*varpair

name=‘cgivar2’*>[*value2*]

<*/varpair*>

<*/then*>

<*/if*>

<*/http*>

Tag Attributes

Overview

For each tag type there is a set of expected attributes. Some tag attributes are required. If you set an unexpected attribute, or fail to set a required attribute, the RP reports an error and discontinues processing.

Further, the value of each tag attribute must be of a particular data type. If you supply an unexpected data type, the RP reports an error and discontinues processing.

Setting attributes

As discussed above, you may assign attributes directly in the open tag, as in:

<*tag

attrname1=‘attrvalue1’

attrname2=‘attrvalue2’*>

<*/tag*>

A second way to assign a tag attribute value is to use a contextual ATTR tag in the content of the tag. The following would have the same result as the previous example:

<*tag*>

<*attr

name=‘attrname1’*>attrvalue1

<*/attr*>

<*attr

name=‘attrname2’*>attrvalue2

<*/attr*>

<*/tag*>

The ID attribute

The RP supports the ID attribute for all tags. The RP uses the ID attribute’s value as a string identifier for the tag, which can be used by the tag as part of the names for variables set by it. ID value must be non-integer type. It will also be used in debugging output to identify the tag that a message is associated with
.

Language Issues

Language Neutral Text Format

Overview

HTML, HDML, WML, and other content languages have different ways of representing special text, such as less-than signs, white-space characters, and text formatting denotations.

Since some information bound for a client device may be determined in querymaps that are shared across languages, or read from a common database table, a mechanism was created to abstract the representation of these characters.

The solution assigns a variable name to each special character or set of characters. When MS Plus determines the content language, it maps in the variables with values appropriate to that language.

Character sequences

Style or Symbol
Variable name
HTML
HDML
TTML
SMS

Space
language:space

' '
' '

Line break
language:linebreak

\n
\n

Start paragraph
language:paragraph-start
<p>

\n
\n

End paragraph
language:paragraph-end
</p>
-
-
-

Less-than sign
language:less-than
<
<
<
<

Greater-than sign
language:greater-than
>
>
>
>

Ampersand
language:ampersand
&
&
&
&

Double quotation marks
language:double-quote
"
"
"
"

Dollar sign
language:dollar-sign
$
&dol;
$
$

Start left-aligned text
language:left-start
<left>
<left>
-
-

End left-aligned text
language:left-end
</left>
</left>
-
-

Start centered text
language:center-start
<center>
<center>
-
-

End centered text
language:center-end
</center>
</center>
-
-

Start right-aligned text
language:right-start
<right>
<right>
-
-

End right-aligned text
language:right-end
</right>
</right>
-
-

Start bold text
language:bold-start

-
-
-

End bold text
language:bold-end

-
-
-

Start italic text
language:italics-start
<i>
-
-
-

End italic text
language:italics-end
<i>
-
-
-

Start subscript text
language:subsc<sub> ript-start
<sub>
-
-
-

End subscript text
language:subscript-end
</sub>
-
-
-

Start superscript text
language:superscript-start
<super>
-
-
-

End superscript text
language:superscript-end
</super>
-
-
-

Start underlined text
language:underline-start
<u>
-
-
-

End underlined text
language:underline-end
</u>
-
-
-

Copyright symbol
language:copyright
©
(c)
(c)
(c)

Registered trademark symbol
language:registered-tm
®
(r)
(r)
(r)

Non-breaking space
language:non-breaking-space

' '
' '

Asterisk
language:asterisk
*
*
*
*

OPT selection key
language:optdef
3
2
1
1

Alternate text

The OPT tag

To accommodate clients with varying degrees of bandwidth and form factors, this tag is provided to specify multiple alternatives for text. Alternatives are denoted with nested DOPT tags. They are selected by the language-specific selection key (set in the "language:optdef" variable) or the VALUE attribute.

The algorithm for determining which item to select is as follows:

3. Determine the number of available options. If only one is available, add a blank option as the rightmost (most constrained) option.

4. Retrieve the degree of constraint that corresponds to the language in use.

5. Positive numbers select from left to right, or from least constrained to most constrained. Negative numbers select from right to left, or from most constrained to least constrained.

6. The positive number one (1) selects the least constrained item.

7. The negative number one (-1) selects the most constrained item.

8. The number zero (0) is equivalent to negative one (-1)

9. Use the degree of constraint as an index into the options, where 1 selects the first item in the list, 2 the second and so on; -1 selects the last item, -2 selects the second to last and so on.

10. A negative number may never select the left-most item.

11. A positive number may never select the right-most item.

The following illustrates what the indexes should map to for a hypothetical five (5) item list:

1st Item
(Least Constrained)
2nd Item
3rd Item
4th Item
5th Item
(Most Constrained)

1
2
-4 -> -n
3
-3
4 -> n
-2
-1/0

See also: OPT, DOPT.

Example 1

<*opt*>

<*dopt*>

Driving

<*/dopt*>

<*/opt*> Directions

Example 2

 <*opt*>

<*dopt*>

miles

<*/dopt*>

<*dopt*>

m

<*/dopt*>

 <*/opt*>

Example 3

<*opt*>

<*dopt*>

Turn left

<*/dopt*>

<*dopt*>

Left

<*/dopt*>

<*dopt*>

L

<*/dopt*>

 <*/opt*>

In the Example 1, the word, “Driving” will only show up for languages that are not bandwidth constrained.

In the Example 2, the word “miles” will show up for languages that are not bandwidth constrained, and the letter “m” will be used for any language that has any degree of constraint.

In the Example 3, the words “Turn left”, “Left”, or “L” will be selected based on the degree of constraint specified by the language.

Authentication & Access Control

There are two related concepts within MS Plus: authentication and access control. The two are often confused as one, but they are separate. However, both rely on the notion of a service “user.”

· Authentication is the act of associating a request with a service user, usually (though not always) through some form of ID and password. Essentially, a real person provides information to prove that s/he is an approved service user.

· Access control is the act of determining if a service user has sufficient privilege/rights to access something within the service. Note: A user does not have to be authenticated to have access, because MS Plus allows an anonymous user.

SLIDE 32
Authentication

At the core, a service user is simply a number, a user ID. This user ID serves to:

· identify the service user and

· index various tables that hold user information.

Anonymous user is number -1; there is no user 0.

The UserValidationAccessor accessor object handles authentication. Given a login ID, a password, and a login type, UserValidationAccessor must determine if the ID data maps to a user of the service.

· If so, the user is authenticated and the request is associated with that user ID (setting request:auth:is-authenticated as true, and request:auth:user-id to the user ID).

· If not, validation fails, and the main:invalid-login screen is processed instead of the user request.

In addition to setting the request:auth variables, MS Plus loads the full set of user:info variables via the UserInfoAccessor object.

SLIDE 33
Access Control & Validation

MS Plus allows a single service user to access the service from multiple places using multiple logins. This is why validation includes a “login type” parameter. For example, in the Flights R Us evaluation service, there are four types of login defined:

· “normal” is a username & password the user types, for access via HTML and Palm, and sometimes WML from a login page.

· “phone” is a phone number coupled with caller ID for voice
authentication; it has no password.

· “email” is an email address for access via that medium (no password).

· “upsubno” (not a core function yet) is an identifier provided by Phone.com’s UP.Link server that is coupled with a 4-digit PIN to make it easy to sign in.

You, the service developer, decide whether to require a password. UserValidationAccessor simply compares what it’s given to what it has, so an empty string matches an empty string perfectly.

Validation uses a set of variables in:

· request:auth map:login-id,

· request:auth map:password, and

· passive-login-id/passive-password.

You also determine how the user provides authentication information and you arrange to place that information in one or both of these authentication variables.

Active vs. passive login supports cases where cookies allow user identification, but where the service might also want to allow a user to specify a different user login page so the user can login to “spotmail” using a desktop browser.

MS Plus validates authentication variables, if present.

· If successful, a session is found or created for the user, and that session is marked as authenticated.

· Usually, these variables are set either in main:on-transaction-start, or directly as fields in a form.

Validation also determines the session in which a request is processed. Sessions are either anonymous or user-authenticated. A request can run as an authenticated user without including authentication variables, simply by attaching to an existing authenticated session.

request:auth:session-id and request:auth:passive-session-id specify the session that handles the request, but they are given the reverse priority from the active & passive login ID.

SLIDE 34
Access Levels

Service users each have an access level, as to channels within a service.

Access levels are 64-bit numbers where each bit represents a any arbitrary capability you define.

To access a channel, a request must satisfy a non-empty, bitwise intersection of the current request access level (user’s access level whether anonymous or authenticated) and the channel’s access level.

This model supports several security models, from ring-based to group-based.

Anonymous user has access level 1.

The main and error channels require certain server screens and must always have a channel access level 1.

If a request tries to access a channel item for which it has insufficient access rights, MS Plus will forward to one of two screens below. You, the service developer, must program intelligent action in both situations for all devices.

· If the request is authenticated, MS Plus assumes there’s nothing the user can do and vectors to main:access-denied.
This means it’s a group-based service, where one pays to be a member. You might offer the user the opportunity to become a member, for a fee. You can adjust user:info:access_level, to subscribe the user.

· If the request is not authenticated, MS Plus vectors to main:authenticate,
which asks the user to verify who they are, then retries the original request. You can use lists request:general:trace and request:http:parameter (for HTTP) to construct a reference that specifies the original request plus the necessary authentication variables and then MS Plus will go to that screen.

Note: If all channels have access level 1, access is always granted and MS Plus never forces the user to authenticate.

SLIDE 35
Setting Access Levels

How you set access levels depends on where you store users and channel elements and how you’ve defined various accessors for your service’s UserInfoAccessor and ChannelAttributesAccessor.

Typical services store user information in the database user_info table that contains an access_level column.

Each channel has a channel-attributes file at its top that is a Java properties file. The accessLevel property within that file specifies the access level for the channel.

SLIDE 36
MS Plus accesses all data through accessor objects, associated with store objects.

Each class of data has its own accessor. For each class of data, a service must define which store(s) should be accessed.

Data Accessors

Data Access Tags

MS Plus provides four standard ways to fetch or store data, as follows:

12. Use SQL to query a JDBC-compliant database. You can build the SQL query using the full power of the MS Plus tag set, including loops, conditionals, language-selectors, etc. Also, for those databases that support parameters, you can parameterize your queries to optimize database performance. To create a parameterized query:

· Use a ‘?’ in the query string,

· Use PARAM contextual tags to specify the value for each ‘?’, and

· Enclose the query in BODY tags.

13. Use FILEGET to load a file from the file system into a variable.

14. Use FTP to either obtain a directory listing, or fetch a file into a variable
.

15. Use HTTP to get or post information to an HTTP server, specifying URL, query data, and headers. Response data is returned in variables, along with response header data. (Note: Current implementation does not support per-session cookie maintenance, so any HTTP server that relies on cookies for session maintenance won’t work well.)

Use SETVAR to set or create variables. SETVAR automatically handles creating variables as lists or maps along the variable path. For example, the following code creates an entry called help in the request map:

<*setvar name=“request:help:0”*>

The value of help would be a list whose first entry is set by the setvar.

Use DELVAR to set a variable’s value to null, causing <*vardef*> to return false.

Use VCPROCESS to invoke the “process” method of a Java class that implements the VarContextProcessor interface, passing it the current set of variables that define the request. The class can do whatever it needs to with those variables, and set new ones. It returns a value that is typically a String. The VCPROCESS tag then sets the VCPROCESS:[ID:] status variable to the returned string.

SLIDE 37
Data stores are of two types:

1. File

2. Database (DB)

Each type has its own set of accessor classes, which stores its type of data in a very specific way.

Data Accessors: Stores

SLIDE 38
(Empty Slide)

Data Accessors: Flow

SLIDE 39
SLIDE 45 (end of slide pitch)

Request Processing Details

(Empty Slide)

MSML Tags Organized by Functional Groups

Overview

This section covers technical discussions of tags, organized by the following functional groups:

· String Manipulation Tags, page 69
· Development Tags, page 73
· Control Flow Tags, page 74
· Query Tags, page 79
· Comparison Tags, page 80
· Subroutine Tags, page 82
· Output Tags, page 83
· MS Plus System Access Tags, page 84
· Direct Calls to Java Classes Tags, page 86
Effective Coding Practice
Developing content channels can quickly lead to a high level of complexity. Therefore, this section discusses useful conventions for:

· cleaner designs,

· easier debugging, and

· smoother handoff between developers.

Key Concepts

Separate content layout from query logic

When designing a channel, remember to:

___ Use content templates primarily for formatting results for the user’s device.

___ Use querymaps for query, routing, and logic.

Avoid overloading variables

For example, you might set a permanent variable for a user's preferred weather city. MS Plus then uses that variable by default. Later, when the user requests to see a different city, MS Plus sets a request-lifetime variable with the same name, which takes precedence.

___ For clarity, have each variable (name) serve one purpose.

___ Perform logic in the querymap to decide what actions to take, based on variable(s) settings.

___ Test for variables, then conditionally set other variables in a querymap.

Design for single-purpose content templates

___ As much as possible, use content templates for one basic purpose.

MS Plus “forwarding” support makes it easy to use content templates for different purposes. This way, you can minimize conditional logic inside content templates.

Use “sub-routines” and “macros” where appropriate

___ Use “forwarding” to use querymaps and content templates as “subroutines.”

If there are several places in a channel where the user is given an identical screen to set a city, you can accomplish this with the same content templates/querymaps, even if a different variable is set. For an example see the sample weather channel.

You can insert, in the body of content templates or querymaps, other content templates and querymaps.

While you should take care to not degrade performance by abusing this functionality, it does allow cleaner channel design and reuse of code.

Use session and permanent variables only where appropriate

Session variables and permanent variables can be confusing and they can accumulate after many requests.

___ Only set permanent variables when a value is applicable across sessions.

___ Only set session variables when a value is applicable only for the current session.

Avoid confusion

Confusion leads to longer development and more bugs.

___ If you find yourself doing something in a convoluted way, ask another developer or programmer if there is an easier way.

___ If appropriate, suggest the development of a tag to do what you want to do.

Specify the navigation first

On simple channels, it may seem easier to just start creating screens as you need them, but once the complexity hits a certain point, you will get confused.

___ Study the screen navigation diagrams for the sample channels.

 ___ Create navigation diagrams for your channels.

Navigation diagrams will be useful for you and other developers who might want to do new development on your channels or learn from your work.

Use valid XML syntax

___ Surround all XML and MSML attributes with quotation marks.

___ If a tag does not have a specific end tag, end it with a slash (e.g. <*hello/*>).

Minimize parameter usage

___ Question your design if many references to the same page pass the same static variable values.

___ Minimize the need for passing parameters by using “forwarding” mechanisms; organize your querymaps to set good default values.

Only use SQL for what it's good for

___ When phrasing SQL queries, remember you can use MS Plus MSML tags for conditional logic.

SQL can achieve many of the same tasks, but you can use MS Plus MSML tags to be more straightforward and relieve compatibility issues across databases.

Choose the tag that is the best fit

MSML tags offer much flexibility.

___ Become familiar with the entire tag set so you can use the tag best suited for your service goals.

Format for readability

___ Use line spacing and indentation to make it easy to understand your content templates and querymaps.

This is especially important when you use nested tags, particularly when you nest at many levels.

Develop a prototype

___ Develop a prototyped version of a channel without loading content into the database.

___ Manually set variables in querymaps instead of querying the database. The content templates won't detect the difference.

Naming conventions

___ Name your variables so their purpose is obvious.

Context is seldom obvious from the names for session and permanent variables. A descriptive name can save much confusion, even for request variables.

Use lower case characters

___ Use lowercase letters for names of tags, attributes, variables, and screens.

Variable and channel object names

___ For variable and channel object names (content templates, querymaps, and binaries) use lowercase, with multiple words separated by dashes (“-”).

Example: u:weather:default-city.

___ Optionally, organize and name variables hierarchically.

Delimit hierarchy levels with colons (“:”).

We also encourage hierarchical screen names, accomplished by using dashes, so they look the same as word separation (filename restrictions severely limit valid characters in screen names).

___ Name screens with common functionality. Example:

results-index
results-not-found.

___ Use no other special characters (“_”, “+”, “&”, “=“, etc.) for variables or channel object names.

___ For better readability, spell out words in variable and channel object names, instead of abbreviating.

___ Abbreviate long words at common points.

We discourage use of one-letter or acronyms, except where the acronym is commonly used (such as sql).

Proper abbreviations include sql, sms, and admin.

Inappropriate abbreviations include err for error, tz for timezone, and bin for binary.

 (See …yada…yada…yada…, page,for further discussion about naming conventions.)

Using Comments and Headers

Comments

Content templates and querymaps support your use of comments.

___ At least, comment each query or section of a querymap to describe its functionality.

___ Make comments using MSML tags, instead of using tags in the content language – unless you want the comments sent to the client.

___ Minimize information sent to constrained bandwidth devices.

Headers

___ Create a valid header conforming to these conventions for each content template or querymap. Place a blank line after the header. There are six header entries, as follows.

Author
Name

Date
Always place Author and Date at the top.

Desc
A general description of the content template or querymap.

Pass
Describe variables that can be passed into the content template or querymap.

Refs
Mention other screens that content template or querymap references.

Sets
List all variables that a querymap sets.

Example querymap header comments:

<*!-- Copyright (c) YourCompany Inc. 2000.All rights reserved.

YourCompany CONFIDENTIAL

Author:
Foux Barre

Date:
04/30/00

Desc:
Querymap - Queries for matching weather cities.

Pass:
city - City string to search on.

Refs:
weather:set-city-multiple-match - On multiple matches.

weather:set-city-assign-var - On a single match.

weather:set-city-no-match - On no matches.

Sets:
sql:WEATHER:CITY:* - Matching city names.

--*>

Example content template header comments:

 <*!-- Copyright (c) YourCompany Inc. 2000. All rights reserved.

YourCompany CONFIDENTIAL

Author:
Foux Barre

Date:
04/30/00

Desc:
Template - Reports weather results.

Pass:
u:weather:city - The selected city (if set).

sql:CURRWEATHER:*:* - Query results for current weather.

sql:FORECAST:*:* - Query results for five-day forecast.

Refs:
weather:set-city-query - “GET WEATHER” button with text box

Passes:
city-type - Description noting weather city should be set.

weather-var - Variable name to set: “city”.

dest-screen - Screen to go forward to after variable is set (weather:main).

weather:set-city-assign-var - “GET WEATHER” button with selection list

--*>

· Querymaps, Content templates, and Binaries
, page 88
You can find further details about tags in the MSML Tags Reference section, 96, organized alphabetically.

String Manipulation Tags

The following explains how to use tags that cause evaluation of, or actions upon, character strings.

SUBSTRING Tag

You can use the SUBSTRING tag to extract characters, by their position, from a specified source string. Use one or both of the START and STOP attributes to specify position(s) in the source string. The source string is not modified.

· START specifies the number of positions to skip in the source string; if not used, retrieval will begin with the first character.

· STOP specifies the last character to retrieve from the source string; if not used, retrieval will include the last character. If start/stop are invalid, RP reports an error condition to error:main screen.

<*!-- This code will return the string “456” --*>

<*substring

start=‘4’

stop=‘7’*>0123456789

<*/substring*>

See also: SUBSTRING.

STRINGFORMAT Tag

You can use STRINGFORMAT and its attributes to format an arbitrary string.

Attribute
Function

TOUPPER
If TRUE, sets all alpha characters to uppercase (default FALSE).

TOLOWER
If TRUE, sets all alpha characters to lowercase (default FALSE).

PAD
If TRUE, specifies a string length and pads any excess characters with spaces.

PURGESPACE
If TRUE, removes leading and trailing white space characters (Default FALSE).

LIMIT
Specifies maximum string length; string will be “cropped” (truncated) if necessary, to satisfy the limit.

If ELLIPSIS is TRUE and the string must be cropped, an ellipsis (“...”) will replace the last three characters of the cropped string.

ELLIPSIS
If TRUE, replaces the last three characters of the specified string with an ellipsis (“...”) (Default FALSE).

<*!—This code limits headline length to 20 characters and displays an ellipsis at the end if cropping occurs. --*>

<*stringformat

limit=‘20’

ellipsis=‘true’*>[*headline*]

<*/stringformat*>

See also: STRINGFORMAT
.

SIZE Tag

You can use the SIZE tag to determine the length, in characters, of a passed string.

<*!-- Returns number of characters in string. --*>

<*size*>[*news-headline*]

<*/size*>

See also: SIZE.

SPLIT Tag

You can use the SPLIT tag to split a passed string into substrings, based on a passed delimiter string.

The results are returned as a list and set to variables with names in the form:

split:[id:]results:[index].

A separate variable holds the number of results:
split:[id:]results:outcount.

The results exclude the delimiter string.

<*!-- Returns a list of odd numbers. --*>

<*split delimiter=‘,’*>

1,3,5,7,9,11

<*/split*>
See also: SPLIT.

SUBSTITUTE Tag

You can use the SUBSTITUTE tag to substitute (replace) characters in a string.

If the NAME attribute is passed, the tag will act on the specified variable and assign the results to that same variable.

Alternately, a string can be passed by value in the body, and the results will be returned by value.

You can specify the replacement, via attributes, two ways:

· The FROM and TO attributes specify exact strings, or,

· The PATTERN attribute supports patterns in Perl 5’s substitution syntax with regular expressions.

<*!-- Converts all white space strings in the passed value to a single space. --*>

<*substitute

pattern=‘s/\s+/ /g’*>[*my-variable*]

<*/substitute*>
See also: SUBSTITUTE.

MATCH Tag

You can use the MATCH tag to compare the value in its body with a Perl 5 regular expression specified by the pattern attribute, in the following format:

 [m]/pattern/[i][m][s][x]

The m prefix is optional and its trailing options mean the following:

· i = case insensitive match

· m = treat the input as consisting of multiple lines where $ and ^ match on each line

· s = treat the input as consisting of a single line where $ and ^ match only on entire string

· x = enable extended expression syntax with white space and comments

As with Perl, any non-alphanumeric character can be used in lieu of the slashes.

MATCH also supports parenthesized subgroups within the regular expression, which will be set to variables.

<HTML>

<*if*>

<*cond*>

<*match

pattern=‘/^p/i’/*>[*username*]

<*/match*>

<*/cond*>

<*then*>

Your name begins with a ‘P’.

<*/then*>

<*else*>

Your name does not begin with a ‘P’.

<*/else*>

<*/if*>

 </HTML>

See also: MATCH.

Development Tags

Overview

The development tags are useful for service development. They allow documentation in querymaps and content templates, and reporting of messages through the debugger or log files.

COMMENTS Tag

Using comment tags, you can create visible comments in the source for content templates and querymaps. Comment tags do not affect processing. The RP ignores comment tags in querymaps and removes them from content templates during processing.

For comments, use the exclamation point and double-dashes (<*!-- … --*>) as follows:

<*!-- This is a sample comment tag. --*>
Note: Do not use more than two dashes at the beginning or end, or, in the comment string.

REPORT Tag

Using the report tag in content templates or querymaps, you can report information to the debugger.

You can report three types of information using these attribute types:

· error,

· warning, and

· info.

Note: Debugger settings will affect how these types are displayed.

Also, you can use the title attribute to create a header in textual debuggers or a list box entry in a graphical debugger.

<*report

type=‘info’

title=‘Greeting from querymap’*>

Hello to all you debuggers out there.

<*/report*>

See also: REPORT.

Control Flow Tags

Overview

The following control tags give you flow control, beyond the basic IF tag.

These tags apply inside and across querymaps and content templates and let you create loops, perform conditional logic, and process other documents.

WHILE Tag

The WHILE tag processes its body (in nested DO tags) in a loop while the Boolean condition remains true.

The loop terminates if the RP evaluates a nested BREAK inside the DO body.

All body values the RP evaluates before the BREAK tag are appended to the overall results of the WHILE tag.

<*!-- Initialize loop value. --*>

<*setvar name=“loop-index”*>0<*/setvar*>

<*!-- Loop forever (NOT a good idea.) --*>

<*while*>

<*cond*>

<*lessthan

value1=”[*loop-index*]”

value2=”10”/*>

<*/cond*>

<*do*>

<*increment name=“loop-index”/*>

<*report

type=“info”

title=“Loop report”*>Index is [*loop-index*].

<*/report*>

<*/do*>

<*/while*>

See also: WHILE, DO, BREAK.

FOR Tag

The FOR tag processes its body in a loop for a specified number of iterations.

Each loop iteration increments the index. You can access this index from within the body. The index is assigned a variable named by the INDEX attribute (or by “:” if not specified).

The START and STOP attributes specify integer values as loop boundaries.

The MAX attribute forces an absolute upper limit for the loop (the loop stops at STOP or MAX, whichever occurs first). A combination of STOP and MAX makes it easy to display a list of values (perhaps the results of a query) up to but not exceeding MAX.

As with the WHILE tag, processing terminates if the RP evaluates a nested BREAK tag inside the body. Body values evaluated before the BREAK tag are appended to the FOR tag’s results.

<HTML>

<*!-- This code displays up to 100 user’s names as the results of a SQL query.

- START and STOP set maximum boundaries.

- MAX ensures we don’t try to display more values than were returned by the query. --*>

<*for

start=‘1’

stop=‘100’

max=‘[*sql:users:outcount*]’*>

[*sql:users:NAME:[*:*]*]

<*/for*>

</HTML>

See also: FOR, BREAK.

FOREACH Tag

You can use the FOREACH tag to iterate over one or more lists.

At each loop iteration, the next entry is selected from each list (each specified with IN tag) and assigned to a variable (specified by the IN tag’s NAME attribute).

You can set an upper limit to the number of iterations.

· If no limit is set, looping occurs until all lists are processed.

· If lists are of different sizes, no variables are assigned for lists whose entries are already processed.

The content of the DO tag is processed, once for each loop iteration, with a specified variable set for each list.

As with the WHILE tag, processing terminates if a nested BREAK tag is evaluated inside the body. Body values evaluated before the BREAK tag are appended to the FOREACH tag’s results.

Following is a simple example with only one list.

<*foreach*>

<*in

name=‘letter’*>

<*split

delimiter=‘,’*>a,b,c,d,e,f

<*/split*>

<*/in*>

<*do*>

[*foreach:index*]. [*letter*]

<*/do*>

<*/foreach*>

Following is a more involved example with multiple lists.

<*foreach*>

<*in

name=‘lower-letter’*>

<*split

delimiter=‘,’*>a,b,c,d,e,f

<*/split*><*/in*>

<*in

name=‘upper-letter’*>

<*split

delimiter=‘,’*>A,B,C,D,E,F

<*/split*>

<*/in*>

<*do*>

[*foreach:index*]. [*lower-letter*], [*upper-letter*]

<*/do*>

<*/foreach*>

See also: FOREACH, IN.

SWITCH Tag

You can use the SWITCH tag to process one of multiple CASEs, based on variable’s value.

The SWITCH tag’s body supports any number of CASE tags.

Use CASE tag(s) to match an exact or regular expression against the variable specified in the SWITCH.

· If you set the PATTERN attribute, the CASE is evaluated as in the MATCH tag.

· If you set the VALUE attribute, the CASE is matched directly.

· If the match is TRUE, the CASE tag body is processed and SWITCH processing ends.

The CASE tag also sets match results the same way as the MATCH tag, described earlier.

The SWITCH body also supports a DEFAULT tag whose body is processed, only if no previous CASE tag evaluates TRUE.

The following code shows how you can use SWITCH to match for news, weather, or sports (or unknown keyword) based on a keyword.

<*switch value=“[*request:text-keyword:keyword*]”*>

<*case pattern=“/^n/i”*>

<*forward name=“news:headlines”/*>

<*/case*>

<*case pattern=“/^w/i”*>

<*forward name=“weather:main”/*>

<*/case*>

<*case pattern=“/^s/i”*>

<*forward name=“sports:main”/*>

<*/case*>

<*default*>

<*forward name=“main:unknown-keyword”/*>

<*/default*>

<*/switch*>

See also: SWITCH, CASE, and DEFAULT.

OPT Tag

While the OPT tag is a control flow tag, its functionality is specific to language issues (see Language Issues, page 52), and is discussed there.

Processing other documents

FORWARD Tag

You can use the FORWARD tag to cause the RP to stop current processing and begin processing a specified querymap and/or content template (if querymap does not exist).

Use channel and name to reference the querymap.

The following example shows a FORWARD to the weather:results screen.

<*forward name=“weather:results”/*>
See also: FORWARD.

Macro Tags

You can use the RUNQUERYMAP and RUNTEMPLATE tags to insert content templates within content templates and querymaps within querymaps.

This gives you subroutine-like functions for querymaps and macro-replacement functions in content templates (like virtual includes in Apache).

Use RUNTEMPLATE to generate an outgoing message for dispatch direct from a querymap.

<HTML>

<*!-- Use a common header for all screens. --*>

<*runtemplate

name=‘main:header’/*>

<*!-- Screen-specific HTML here... --*>

</HTML>

See also: RUNQUERYMAP, RUNTEMPLATE.

Query Tags

FTP Tag

You can use the FTP tag to retrieve file contents or file lists from ftp servers.

Use the SERVER attribute to specify the ftp server to contact.

Use the COMMAND attributes filelist or get to retrieve filelist or file. If you use get, specify the filename with the NAME attribute.

Use the DIR attribute to specify the directory to list or the get file’s directory. The default is the server’s home directory.

· Note: The ftp server’s default login is “anonymous,” with generic password.

· To log in as a specific user, use the USERNAME and PASSWORD attributes.

The FTP get command allows three types of data files: ASCII, EBCDIC, or binary (or image) files. The get command returns file contents.

The FTP tag supports ASCII (default) or binary types. Use the TYPE attribute to specify the type.

Also, for a text file encoded other than ASCII:

3. set the TYPE to binary and

4. specify the encoding type with the ENCODING attribute. MS Plus will then translate from that encoding into the internal server-encoding format.

The results are returned in request variables. When you use the filelist command, you receive the lists of file names, file dates, file sizes, and the number of files.

The RP returns the FTP operation status to a variable, FTP:[ID:] status, that signals whether an FTP process error occurred.

<*ftp server=‘ftp.sample-weather-data-site.com’

 command=‘get’

 name=‘weather-data.dat’

 dir=‘/pub/weatherdata/exampledata’/*>

See also: FTP.
Comparison Tags

General comparisons

Overview

The following tags cause two values to be compared, as long as their types match. You can compare strings, numbers, and dates.

EQUALS Tag

You can use the EQUALS tag to compare the values of two objects and receive a TRUE value if they match. The type may be of any comparable type.

<*if*>

<*cond*>

<*equals value1=‘1’ value2=‘[*one*]’/*>

<*/cond*>

<*then*>

The variable “one” has a value of 1.

<*/then*>

<*else*>

The variable “one” does not have a value 1.

<*/else*>

<*/if*>

See also: EQUALS.

LESSTHAN Tag

You can use the LESSTHAN tag to compare the values of two objects and receive a TRUE value if the first is less than the second. The type may be of any comparable type.

See also: LESSTHAN.

<*lessthan value1=‘aardvark’ value2=‘abacus’/*>

GREATERTHAN Tag

You can use the GREATERTHAN tag to compare the values of two objects and receive a TRUE value if the first is greater than the second is. The type may be of any comparable type.

<*greaterthan value1=‘aardvark’ value2=‘abacus’/*>
See also: GREATERTHAN.

Testing variable definition

VARDEF Tag

You can use the VARDEF tag to determine if a specified value is defined; if defined VARDEF returns a Boolean TRUE value.

<*if*>

<*cond*>

<*vardef name=“main:setvar-count”/*>

<*/cond*>

<*then*>

<*!-- Increment setvar-count if it is set. --*>

 <*increment name=“main:setvar-count”/*>

<*/then*>

<*else*>

<*!-- Initialize setvar-count. --*>

<*setvar name=“main:setvar-count”*>1<*/setvar*>

<*/else*>

<*/if*>

See also: VARDEF.

Subroutine Tags

MS Plus MSML supports three subroutine tags, RUNQUERYMAP, RUNTEMPLATE, and RETURN.

Besides serving as service elements, querymaps and content templates can also act as subroutines for other querymaps or content templates.

RUNQUERYMAP Tag

Use the RUNQUERYMAP tag to call a querymap.

RUNTEMPLATE Tag

Use the RUNTEMPLATE tag to call a content template.

Both RUNQUERYMAP and RUNTEMPLATE accept parameters, using PARAM tags within their body.

You can cause called querymaps and content templates to return values of any single type.

· A querymap/template always returns data of the same type, but that type can be any of the available types, including lists/maps of arbitrary complexity.

You must declare a subroutine querymap/content template differently from one used to directly satisfy a device request.

· If the querymap/content template accepts parameters, it will contain PARAMDEF contextual tags giving names and expected types (and whether the parameter can be null) for each parameter, plus a BODY contextual tag that then encompasses the bulk of the querymap/content template.

· CONTENTTEMPLATE always returns a string.

RETURN Tag

Use the RETURN tag within a querymap to specify the value to return from the querymap.

· If there is no RETURN, the querymap returns null.

When running a querymap or content template, you can specify a different content language and/or device to use in locating the subroutine.

· If you do not specify the name of the querymap/content template to run, the call acts similar to a superclass call, where you can write special code for a particular device, then run the device-independent code while grouping the functionality logically by using the same base screen name.

Output Tags

MS Plus MSML supports two output tags, DISPATCH and REPORT.

DISPATCH Tag

Use DISPATCH to tell the transport’s dispatcher to send data over that transport.

· The body of the DISPATCH tag must be either empty or a map to control what is sent.

The elements of the map match the elements of the “output” map used for dispatching results as the final stage of a getcontent command.

· There are some transport-generic elements (“body”, for example) and some transport-specific elements (example: email:address specifies the address(es) to which the SMTP transport should dispatch an email.)

You can use the DISPATCH tag in a number of contexts.

· Frequently it is used from a querymap run by a timed event to send email or SMS messages at particular times.

· It can also be used within the context of a getcontent command, to both provide immediate information and send more information via another route, or notify someone of the transaction. The transport dispatch mechanism is very flexible, and the DISPATCH tag gives access to all the flexibility.

REPORT Tag

Use REPORT to generate the same reports generated internally by the server. Reporters in MS Plus configuration can gather these reports to be routed to logs, people, or nowhere
. Reports are informational, warning, or error. Reports are generated at the highest level for each type of report.

MS Plus System Access Tags

You can use the following “MS Plus System access” tags to do the following:

1. Set and cancel internal events,

2. Call Java objects,

3. Send a request to a different server.

SETEVENT Tag

Use SETEVENT to create a timed event to run a specified querymap. You can define variables and their values to set when the querymap is run, using VARPAIR tags within the body of the SETEVENT tag.

· You can set events as one-time or repeating, as specified in the SETEVENT tag.

CANCELEVENT Tag

Use CANCELEVENT to delete a timed event.

CALL Tag

Use CALL to access any Java object whose handle can be obtained.

· The call is performed via the Java reflection API, which requires no special handling by the called object.

· Use PARAM tags within the body of the CALL to pass parameters for the method.

· Note: MS Plus performs no conversion of value types. This means parameter types are the types used when searching for the proper method to call.

· If a method expects a Double, and you pass a string, for example,

<*PARAM*>3<*/PARAM*>

the call will fail.

VCPROCESS Tag

Use VCPROCESS to instantiate a Java class and call its process() method that implements the VarContextProcessor interface on the current variable context.

· VarContextProcessor returns a string assigned to vcprocess:[id:]status.

· VCPROCESS itself returns nothing.
ROUTE Tag

Use ROUTE to cause the transport from which the request initiated to send the request to a different server.

· Usually, you only use ROUTE in the creation of a gatekeeper service; otherwise, not generally useful.

Direct Calls to Java Classes Tags

Overview and disclaimer

The tags below let you make direct calls to Java classes from a querymap or content template. However, they are not generally supported. Use with extreme care. Abuse of these tags could have very negative impacts, such as, System.exit() dropping the server.

CALL tag

You can use this tag to make arbitrary Java calls from a querymap. Two types of calls are supported:

· Calls to a passed object, where the object is passed with the OBJECT attribute, and

· Static calls to a specified class, where the class name is passed as a string with the CLASS attribute.

Pass the method to call as a string with the METHOD attribute. If the method expects parameters, specify them with child PARAM tags.

· If an error occurs on the call, the error message will be assigned to a variable named call:[id*]:error.

· NOTE: We strongly discourage use of this tag because it allows you to run any Java class method, which WILL cause problems if used incorrectly.

<*!-- Get current time in milliseconds --*>

<*setvar name=“millies”*>

<*call

class=“java.lang.System”

method=“currentTimeMillis”/*>

<*/setvar*>

<*!-- Trim a string “manually” with String.trim() --*>

<*setvar

name=“foo”*>

This is my long string.

<*/setvar*>

*setvar

name=“trim”*>

<*call

object=“foo”

method=“trim”/*>

<*/setvar*>

VCPROCESS tag

You can use the VCPROCESS tag to create an instance of a class that implements the VarContextProcessor interface and run it with the context of the current request.

· The VarContextProcessor interface is simple, and MS Plus uses it extensively to perform internal processing.

· Classes read in variables from the context, modify and/or add variables in the context, or both.

VCPROCESS gives you a simple mechanism for adding plug-in programmatic functions to a querymap or content template. You may find it especially useful for specialized cases like content loading.

The processor class may return status in a string assigned to a variable named vcprocess:[id:]status.

<*!-- Run an example content loader class. --*>

<*vcprocess

id=“process”

process=“vcprocessor.server.contenthandler.CSVFile
Processor”/*>
SLIDE 1
Effective Coding Practice
Developing content channels can quickly lead to a high level of complexity. Therefore, this section discusses useful conventions for:

· cleaner designs,

· easier debugging, and

· smoother handoff between developers.

Key Concepts

Separate content layout from query logic

When designing a channel, remember to:

___ Use content templates primarily for formatting results for the user’s device.

___ Use querymaps for query, routing, and logic.

Avoid overloading variables

For example, you might set a permanent variable for a user's preferred weather city. MS Plus then uses that variable by default. Later, when the user requests to see a different city, MS Plus sets a request-lifetime variable with the same name, which takes precedence.

___ For clarity, have each variable (name) serve one purpose.

___ Perform logic in the querymap to decide what actions to take, based on variable(s) settings.

___ Test for variables, then conditionally set other variables in a querymap.

Design for single-purpose content templates

___ As much as possible, use content templates for one basic purpose.

MS Plus “forwarding” support makes it easy to use content templates for different purposes. This way, you can minimize conditional logic inside content templates.

Use “sub-routines” and “macros” where appropriate

___ Use “forwarding” to use querymaps and content templates as “subroutines.”

If there are several places in a channel where the user is given an identical screen to set a city, you can accomplish this with the same content templates/querymaps, even if a different variable is set. For an example see the sample weather channel
.

You can insert, in the body of content templates or querymaps, other content templates and querymaps.

While you should take care to not degrade performance by abusing this functionality, it does allow cleaner channel design and reuse of code.

Use session and permanent variables only where appropriate

Session variables and permanent variables can be confusing and they can accumulate after many requests.

___ Only set permanent variables when a value is applicable across sessions.

___ Only set session variables when a value is applicable only for the current session.

Avoid confusion

Confusion leads to longer development and more bugs.

___ If you find yourself doing something in a convoluted way, ask another developer or programmer if there is an easier way.

___ If appropriate, suggest the development of a tag to do what you want to do.

Specify the navigation first

On simple channels, it may seem easier to just start creating screens as you need them, but once the complexity hits a certain point, you will get confused.

___ Study the screen navigation diagrams for the sample channels.

 ___ Create navigation diagrams for your channels.

Navigation diagrams will be useful for you and other developers who might want to do new development on your channels or learn from your work.

Use valid XML syntax

___ Surround all XML and MSML attributes with quotation marks.

___ If a tag does not have a specific end tag, end it with a slash (e.g. <*hello/*>).

Minimize parameter usage

___ Question your design if many references to the same page pass the same static variable values.

___ Minimize the need for passing parameters by using “forwarding” mechanisms; organize your querymaps to set good default values.

Only use SQL for what it's good for

___ When phrasing SQL queries, remember you can use MS Plus MSML tags for conditional logic.

SQL can achieve many of the same tasks, but you can use MS Plus MSML tags to be more straightforward and relieve compatibility issues across databases.

Choose the tag that is the best fit

MSML tags offer much flexibility.

___ Become familiar with the entire tag set so you can use the tag best suited for your service goals.

Format for readability

___ Use line spacing and indentation to make it easy to understand your content templates and querymaps.

This is especially important when you use nested tags, particularly when you nest at many levels.

Develop a prototype

___ Develop a prototyped version of a channel without loading content into the database.

___ Manually set variables in querymaps instead of querying the database. The content templates won't detect the difference.

Naming conventions

___ Name your variables so their purpose is obvious.

Context is seldom obvious from the names for session and permanent variables. A descriptive name can save much confusion, even for request variables.

Use lower case characters

___ Use lowercase letters for names of tags, attributes, variables, and screens.

Variable and channel object names

___ For variable and channel object names (content templates, querymaps, and binaries) use lowercase, with multiple words separated by dashes (“-”).

Example: u:weather:default-city.

___ Optionally, organize and name variables hierarchically.

Delimit hierarchy levels with colons (“:”).

We also encourage hierarchical screen names, accomplished by using dashes, so they look the same as word separation (filename restrictions severely limit valid characters in screen names).

___ Name screens with common functionality. Example:

results-index
results-not-found.

___ Use no other special characters (“_”, “+”, “&”, “=“, etc.) for variables or channel object names.

___ For better readability, spell out words in variable and channel object names, instead of abbreviating.

___ Abbreviate long words at common points.

We discourage use of one-letter or acronyms, except where the acronym is commonly used (such as sql).

Proper abbreviations include sql, sms, and admin.

Inappropriate abbreviations include err for error, tz for timezone, and bin for binary.

 (See …yada…yada…yada…, page
,for further discussion about naming conventions.)

Using Comments and Headers

Comments

Content templates and querymaps support your use of comments.

___ At least, comment each query or section of a querymap to describe its functionality.

___ Make comments using MSML tags, instead of using tags in the content language – unless you want the comments sent to the client.

___ Minimize information sent to constrained bandwidth devices.

Headers

___ Create a valid header conforming to these conventions for each content template or querymap. Place a blank line after the header. There are six header entries, as follows.

Author
Name

Date
Always place Author and Date at the top.

Desc
A general description of the content template or querymap.

Pass
Describe variables that can be passed into the content template or querymap.

Refs
Mention other screens that content template or querymap references.

Sets
List all variables that a querymap sets.

Example querymap header comments:

<*!-- Copyright (c) YourCompany Inc. 2000.All rights reserved.

YourCompany CONFIDENTIAL

Author:
Foux Barre

Date:
04/30/00

Desc:
Querymap - Queries for matching weather cities.

Pass:
city - City string to search on.

Refs:
weather:set-city-multiple-match - On multiple matches.

weather:set-city-assign-var - On a single match.

weather:set-city-no-match - On no matches.

Sets:
sql:WEATHER:CITY:* - Matching city names.

--*>

Example content template header comments:

 <*!-- Copyright (c) YourCompany Inc. 2000. All rights reserved.

YourCompany CONFIDENTIAL

Author:
Foux Barre

Date:
04/30/00

Desc:
Template - Reports weather results.

Pass:
u:weather:city - The selected city (if set).

sql:CURRWEATHER:*:* - Query results for current weather.

sql:FORECAST:*:* - Query results for five-day forecast.

Refs:
weather:set-city-query - “GET WEATHER” button with text box

Passes:
city-type - Description noting weather city should be set.

weather-var - Variable name to set: “city”.

dest-screen - Screen to go forward to after variable is set (weather:main).

weather:set-city-assign-var - “GET WEATHER” button with selection list

--*>

Querymaps, Content templates, and Binaries
The table below lists names and details for all querymaps, content templates, and binaries that are handled specially by the server.

Channel:Name
Type
Description

error:main
querymap/content template
When an error occurs during request processing, the RP attempts to process a querymap and/or content template of this name. The following variables, set by the server, are available when the querymap or content template is processed:

request:error:title - A short description of the error that occurred.

request:error:message - A full description of the error, which could be very lengthy.

Required if you want to alert the user that some internal error occurred.

Could be used to route to a generic error screen, if you don’t want to provide internal error information in a production environment.

main:access-denied
querymap/content template
When a user attempts to access a screen to which they have no access privileges, the RP attempts to process a querymap and/or content template of this name.

Required if you are implementing a service that uses access levels.

main:authenticate
querymap/content template
If an unauthenticated user attempts to access a screen that requires authenticated access, the RP attempts to process a querymap and/or content template of this name. Normally, a content template should be used to provide a login screen.

Required if you are implementing a service that uses access levels.

main:generic
querymap/content template
Transaction Processing: Request Types

Required if you have a transport that uses a ToGenericTranslator request translator.

main:keyword
querymap/content template
Transaction Processing: Request Types

Required if you have a transport that uses a ToKeywordTranslator request translator.

main:invalid-login
querymap/content template
If a user’s login username or password is invalid, the RP attempts to process a querymap and/or content template of this name.

Required if you are implementing a service that uses access levels.

main:logout
querymap/content template
By default, logout command requests attempt to process a querymap and/or content template of this name.

Required if you wish to use the REFLOGOUT tag in your service.

main:main
querymap/content template
By default, getcontent command requests attempt to process a querymap and/or content template of this name.

Required for any service.

main:message
querymap/content template
Transaction Processing: Request Types

Required if you have a transport that uses a ToMessageTranslator request translator.

main:on-session-start
querymap
The RP attempts to run a querymap by this name each time a session is started.

Optional.

main:on-session-end
querymap
The RP attempts to run a querymap by this name each time a session is about to end (the querymap is performed within the session to be terminated).

Optional.

main:reroute

When the RP determines that request rerouting should occur, it attempts to process a querymap and/or content template of this name. The variable request:general:reroute-destination will be available, and contain destination information.

Required if a transport is marked as routable in MS Plus configuration.

main:undefined
binary
If an error occurs in retrieving an image for a getbinary command request, the RP attempts
to return a GIF image by this name.

Optional. The browser will most likely display a “broken image” icon if image is not provided; a getbinary error occurs.

main:on-transaction-start
querymap
The RP attempts to run this querymap at the beginning of each request. If implemented, it should be used to set the authentication variables as well as the variable request:general:language and/or request:general:device based on request information.

Optional, but very useful to setup authentication, useragent info, or other information
.

MSML Tags Reference

This section contains an alphabetical list of tags.

First, a note about the language used in this section. The language herein describes tags as if they do something. This is shorthand to streamline the description and minimize words. But please bear in mind that tags don’t really DO anything! Tags are actually passive data that the RP uses to determine how to take the action you specify in the tag’s contents.

For example, the shorthand for the AND tag states:

· “Calculates logical AND of values returned by children tags. The RP stops processing when it determines the return value.”

Notice that the above statement suggests that the tag performs the calculation. More correctly, it states the effect of using the AND tag. More accurately stated, it would say:

· “The AND tag causes the RP to calculate the logical AND of the Boolean values returned by children tags. The RP stops processing when it determines the return value.”

AND

Calculates logical AND of values returned by children tags. RP stops processing as soon as it determines the return value.

Attributes
None

Body
A set of Boolean values, used to calculate the result. White space is ignored.

Returns
Boolean result of ANDing all children.

Example

<*if*>

<*cond*>

<*and*>

<*true/*><*true/*>

<*/and*>

<*cond*>

<*then*>Success<*/then*>

<*else*>Failure<*/else*>

<*/if*>

See also
Boolean Logic Tags, page 43
ATTR

Contextual tag that assigns an attribute to a tag context.

Attributes
NAME: Name of attribute to set. (Required)

TYPE: Name of the expected value type for the tag’s body. Must be one of the eight basic types:

· String Type

· Boolean Type

· Number Type

· Date Type

· List Type

· Map Type

· Binary Type

· Special Type

Body
Value to assign to attribute. White space is significant.

Returns
NA

Example

<*dateformat*>

<*attr name='value'*>[system:timestamp*]

<*/attr*>

<*body*>hh:mm:ss<*/body*>

<*/dateformat*>

See also
Contextual Tags, page 41
BODY

Contextual tag that contains the body for another tag.

Attributes
None
Body
Any content to evaluate.
Contextual Tags
Note: No contextual tags are supported in this tag.

See also
Contextual Tags, page 41
BREAK

Tag that interrupts loop processing in FOR, FOREACH, and WHILE tags.

Attributes
None

Body
None
Returns
Nothing
Example

<*foreach*>

<*in name='letter'*>

<*split delimiter=','*>a,b,c,d,e,f<*/split*>

<*/in*>

<*do*>[*foreach:index*][*letter*]

<*if*>

<*cond*>

<*equals value1='d' value2='[*letter*]'/*>

<*/cond*>

<*then*>

<*break/*>

<*/then*>

<*/if*>

<*/do*>

<*/foreach*>

See also
Control Flow Tags, page 45
CALL

Makes a method call on a passed object. Use of this tag is strongly discouraged because it allows you to run any Java class method – this will cause problems if used incorrectly.

Attributes
OBJECT: Object on which to make the call.

CLASS: Absolute name of class on which to make a static call.

METHOD: Method to invoke (required).

Either the OBJECT or CLASS attribute must be set.

Contextual Tags
PARAM: Denotes parameters to the method call.

Body
None
Returns
Results of calling method.

Example

<*!-- Get the current time in milliseconds --*>

<*setvar name='millies'*>

<*call

class='java.lang.System'method='currentTimeMillis'/*>
<*/setvar*>

See also
MS Plus System Access Tags, page 47 and Direct Calls to Java Classes Tags, page 86
CANCELEVENT

Cancels an event, using specific name, attributes, and value.

Attributes
EVENTID: Name of event to cancel. (Required)
Body
None

Returns
Nothing

Example

<*cancelevent eventid='[*event-id*]'/*>
See also
MS Plus System Access Tags, page 47
CASE

Contextual tag used by SWITCH to denote an evaluation. Use either the VALUE attribute or the PATTERN attribute. Three forms of evaluation can be used:

16. an exact match,

17. a regular expression, or,

18. an arbitrary Boolean expression.

Attributes
VALUE - A value to compare as an exact match.

PATTERN - String used to perform the match, taking a pattern specified in Perl5 native format.

Format
The format is specified as:

[m]/pattern/[i][m][s][x]

The m prefix is optional. The meanings of the trailing options are:

i - perform a case insensitive match

m - treat the input as consisting of multiple lines

s - treat the input as consisting of a single line

x - enable extended expression syntax incorporating

white space and comments

As with Perl, you can use any non-alphanumeric character in lieu of the slashes.

Body
Value to process if evaluation is positive.

See also
SWITCH Tag, page 77 and SWITCH, page 148
COND

Contextual tag that evaluates a condition.

Attributes
None

Body
Boolean expression

Example

<*if*>

<*cond*>

<*and*>

<*true/*><*true/*>

<*/and*>

<*/cond*>

<*then*>Success<*/then*>

<*else*>Failure<*/else*>

<*/if*>

See also
Boolean Logic Tags, page 43
CONTENTTEMPLATE

Processes a content template; must be used in all content templates.

Attributes
None

Body
Content to process

Returns
String result of processing

Notes
The RP evaluates CONTENTTEMPLATE’s children, merges, then returns all the results as one string. CONTENTTEMPLATE always returns a string.
Example

<*contenttemplate*>

<html> <head>

<title>Rerouting to balance load...</title>

<meta http-equiv=“refresh”

content=“0;url=[*redirectedURL*]”>

</head>

<body>

The document has temporarily moved to

[*redirectedURL*].

</body>

</html>

<*/contenttemplate*>

See also
CONTENTTEMPLATE, page 40 and Subroutine Tags, page 47
DATE

Creates a date from the passed value.

Attributes:
PATTERN: Pattern to use for parsing date. If all three pattern, country, and language attributes are not set, the default pattern will be “dd MMM yy hh:mm a” in U.S. English language regardless of system wide locale setting (backward compatibility).

LANGUAGE: Language to use for parsing date. For example, if language is set to fr (French), the 10th month of the year should be octobre instead of october (the name of the month will be in French, but the pattern letters (MMM) will always be in English), for example:

<*date

pattern=“MMM/dd/yyyy”*>octobre/10/2000

<*/date*>

COUNTRY: Country to use for parsing date. It's primarily use to set the pattern ordering. For example:

<*date

country=“us” language=“en”*>

<*/date*>

will accept date value in: MMM d, yyyy h:mm:ss a while

<*date

country=“gb” language=“en”*>

<*/date*>

will accept date value in: dd-MMM-yy HH:mm:ss.

If pattern attribute is not set and either language or country attribute is set, the default date/time pattern will depend on the language/country locale.

TIMEZONE: Create date/time in this time zone. Default is local (server's) time zone.

Body
Value to convert to date.
Returns
Date result.

Examples
<*!-- Sets a new date variable (assuming the server is running on PST time) --*>

<*setvar name='my-date'*>

<*date

pattern='MM/dd/yy HH:mm:ss' timezone='PST'*>09/08/72 10:00:00

<*/date*>

<*/setvar*>

returns a date value = 09/08/72 10:00:00

<*setvar name='my-date'*>

<*date

pattern='MM/dd/yy HH:mm:ss' timezone='HST'*>09/08/72 10:00:00

<*/date*>

<*/setvar*>

returns a date value = 09/08/72 13:00:00(10:00:00 in Hawaii on 09/08/72 is 13:00:00 in PST on the same day)

<*!-- set date using English --*>

<*setvar name='my-date'*>

<*date

pattern=“MMM/dd/yyyy” language=“en”*>july/21/2000

<*/date*>

<*/setvar*>

<*!-- set date using French --*>

<*setvar name='my-date'*>

<*date

pattern=“MMM/dd/yyyy” language=“fr”*>juillet/21/2000

<*/date*>

<*/setvar*>

See also
Values and variables: Value types

DATEADD
Adds an interval to a passed date value.

Attributes
NAME - Name of variable with date value to act on. If set, the value of the variable will be acted on, and the results replace the original variable.

UNIT - String specifying type of unit to add. Valid units are “year”, “month”, “week”, “day”, “hour”, “minute”, and “second” (or plural forms). (Required.)

INCREMENT - Number of units to add to the passed date. May be any integer value. Defaults to 1.

Body
Date value to use if NAME is not used.

Returns
Date result of substitution

Example

<*!-- Adds 3 weeks to the specified variable --*>

<*dateadd name='my-date'

increment='3'

unit='week'/*>
See also
Data Manipulation Tags, page 46
DATEDIFFERENCE

Computes the difference between two dates

Attributes

VALUE1: 1st Date value or a long value (no decimal point) representing the number of milliseconds since the standard base time known as “the epoch”, namely January 1, 1970, 00:00:00 GMT (Required).

VALUE2: 2nd Date value or a long value (same as 1st Date value, Required).

The ordering of value1 and value2 are not important.

UNIT: Set result to this unit. Valid units are: second, minute, hour, day, and week. If not set, the results will be in second, minute, hour, day, month, and year (see Sets: below)

Returns
 Nothing

Sets
datedifference:[ID:]unit - result in input unit (where unit equals to: second, minute, hour, day, week)

OR

datedifference:[ID:]second
difference in this number of second

datedifference:[ID:]minute
difference in this number of minute

datedifference:[ID:]hour
difference in this number of hour

datedifference:[ID:]day
difference in this number of day

datedifference:[ID:]month
difference in this number of month

datedifference:[ID:]year
difference in this number of year

Example
Assuming the following two dates:

<*setvar name=“value1”*>

<*date

pattern=“MM/dd/yyyy HH:mm:ss”*>06/15/2000 10:30:10

<*/date*>

<*setvar*>

<*setvar name=“value2”*>

<*date

pattern=“MM/dd/yyyy HH:mm:ss”*>08/01/1998 00:00:00

<*/date*>

<*setvar*>

Then

<*datedifference id=“datediff”

value1=“[*value1*]”

value2=“[*value2*]”

unit=“day”/*>

Returns:

datedifference:datediff:day = 684.4376157407407 (days)

<*datedifference id=“datediff”

value1=“[*value1*]”

value2=“[*value2*]”/*>

Returns:

datedifference:datediff:second = 10 (seconds)
datedifference:datediff:minute = 30 (minutes)
datedifference:datediff:hour = 10 (hours)
datedifference:datediff:day = 14 (days)
datedifference:datediff:month = 10 (months)
datedifference:datediff:year = 1 (year)
DATEFORMAT

Formats a passed date value as a string, based on format in body and the system's default locale.

Attributes
VALUE: Date value to format. (Required.)

LANGUAGE: Output using this language (i.e. “en” for English, “fr” for French ..), has effects mostly on the name of the month and day of the week. These codes are the lower-case two-letter codes as defined by ISO-639. You can find a full list of these codes at a number of sites, such as: ISO Language Code.

COUNTRY: Output to this country's format (i.e. MM/dd/yyyy for us and dd/MM/yy for gb, Great Britain), some language attribute might override country attribute. These codes are the upper-case two-letter codes as defined by ISO-3166. You can find a full list of these codes at a number of sites, such as: ISO Country Code.

DATESTYLE: Default date format according to language and country. Valid values are: short, medium, long, and full (If you specify datestyle attribute, you can not use the date pattern at the same time).

TIMESTYLE: Default time format according to language and country. Valid values are: short, medium, long, and full (If you specify timestyle attribute, you can not use the date pattern at the same time)

TIMEZONE: Convert date/time to this time zone (it will take daylight savings time into account) before formatting.

Body
To specify the time format, use a time pattern string. In this pattern, all ASCII letters are reserved as pattern letters, which are defined as the following:

Sym-
bol
Meaning
Presentation
Example

G
Era designator
(Text)
AD

Y
Year
(Number)
1996

M
Month in year
(Text and Number)
July & 07

d
Day in month
(Number)
10

h
Hour in am/PM (1 ~ 12)
(Number)
12

H
Hour in day (0 ~ 23)
(Number)
0

m
Minute in hour
(Number)
30

s
Second in minute
(Number)
55

S
Millisecond
(Number)
978

E
Day in week
(Text)
Tuesday

D
Day in year
(Number)
189

F
Day of week in month
(Number)
2 (2nd Wed. in July)

w
Week in year
(Number)
27

W
Week in month
(Number)
2

a
Am/PM marker
(Text)
PM (Must have both letters)

k
Hour in day (1~24)
(Number)
24

K
Hour in am/PM (0~11)
(Number)
0

z
Time zone
(Text)
Pacific Standard Time

'
Escape for text
(Delimiter)

“
Single quote
(Literal)

The count of pattern letters determines the format.

(Text): 4 or more pattern letters – use full form, less than 4 – use short or abbreviated form if one exists.

(Number): the minimum number of digits. Shorter numbers are zero-padded to this amount. Year is handled specially; that is, if the count of ‘y’ is 2, the Year will be truncated to 2 digits.

(Text & Number): 3 or over, use text, otherwise use number.

Any characters in the pattern that are not in the ranges of [‘a’…’z’] and [‘A’...’Z’] will be treated as quoted text. For instance, characters like the following

‘:’, ‘.’, ‘ ’, ‘#’ ‘@’

will appear in the resulting time text even they are not embraced within single quotes.

A pattern containing any invalid pattern letter will throw an exception during formatting or parsing.

Examples Using the US Locale:

Format pattern
Result

yyyy.MM.dd G 'at' hh:mm:ss z
1996.07.10 AD at 15:08:56 PDT

EEE, MMM d, ‘‘yy
Wed, July 10, ‘96

h:mm a
12:08 PM

hh ‘o’clock’ a, zzzz
12 o’clock PM, Pacific Daylight Time

K:mm a, z
0:00 PM, PST

yyyyy.MMMMM.dd GGG hh:mm aaa
1996.July.10 AD 12:08 PM

Returns
The formatted date string.

Example

<*dateformat value='[*system:timestamp*]'/*>

MMM dd yyyy, hh:mm:ss a

<*/dateformat*>

See also
Values and variables: Value types

See also
Data Manipulation Tags, page 46
DATESUBTRACT
Subtracts an interval from a passed date value.

Attributes
NAME - Name of variable with date value to act on. If set, the value of the variable will be acted on, and the results will be assigned to the same variable.

UNIT - String specifying type of unit to add. Valid units are “year”, “month”, “week”, “day”, “hour”, “minute”, and “second” (or plural forms). (Required.)

DECREMENT - Number of units to subtract from the passed date. May be any integer value. Defaults to 1.

Body
Date value to use (if NAME is not used).

Returns
Date result of substitution.

Example

<*!-- Subtracts 3 weeks to the specified variable --*>

<*datesubtract

name='my-date'

decrement='3'

unit='week'/*>
See also
Data Manipulation Tags, page 46
DECREMENT

Decrements the value of the passed variable by 1.

Attributes
NAME: Name of variable to decrement. (Required.)

Body
None

Returns
Nothing

Example

<*decrement name='my-number'/*>
See also
Arithmetic Tags, page 46
DEFAULT

Contextual tag that specifies default body to process for the SWITCH tag.

Attributes
None

Body
Value to process.

Example

<*switch value='[*my-value*]'*>

<*case value='1'*>

My value is 1!

<*/case*>

<*case value='2'*>

My value is 2!

<*/case*>

<*default*>

My value sure isn’t 1 or 2!

<*/default*>

<*/switch*>
See also
SWITCH Tag, page 77 and SWITCH, page 148
DELVAR

Deletes a variable, based on the variable’s name.

Attributes
NAME: Name of variable to delete. (Required.)

Body
None

Returns
Nothing

Example

<*delvar name=“my-variable”/*>
See also
Variables and values: Variables

DISPATCH

Calls the dispatcher for the passed transport instance. The dispatcher will use variables named with the passed prefix to generate the request.

For relevant variable names, see documentation on the specific dispatcher class.

Attributes
TRANSPORT- Name of transport associated with dispatcher. (Required.)

Body
Map of variables with outgoing message information.

Returns
Nothing

Example

<*dispatch transport='test-email'*>

<*map*>

<*varpair name='body:content'*>

You have received a test message.

<*/varpair*>

<*varpair name='email:address'*>

Mobile@brandx.com

<*/varpair*>

<*varpair name='email:header:subject'*>

Here is your test message.

<*/varpair*>

<*/map*>

<*/dispatch*>
See also
Transaction processing: Session management

DO

Contextual tag for the WHILE, FOR, and FOREACH tags that holds the content to evaluate on each iteration of the loop.

Attributes
None

Body
Any content to evaluate

Example

<*!-- Initialize loop value. --*>

<*setvar name=“loop-index”*>0<*/setvar*>

<*!-- Loop forever (NOT a good idea.) --*>

<*while*>

<*cond*><*true/*><*/cond*>

<*do*>

<*increment name=“loop-index”/*>

<*report type=“info”

title=“Loop report”*>Index is [*loop-index*].<*/report*>

<*/do*>

<*/while*>

DOPT

Contextual tag for the OPT tag that holds the content to evaluate if a condition matches.

Attributes
None

Body
Any content to evaluate

Example

<*opt*>

<*dopt*> Turn left <*/dopt*>

<*dopt*> Left <*/dopt*>

<*dopt*> L <*/dopt*>
<*/opt*>

See also
Language-related issues

ELSE

Contextual tag for the IF tag that holds the content to evaluate if a condition is false.

Attributes
None

Body
Any content to evaluate.

Example

<*if*>

<*cond*><*true/*><*/cond*>

<*then*>

TRUE is true!

<*/then*>

<*else*>

Uh oh, TRUE doesn’t seem to be true.

<*/else*>

<*/if*>

See also
Tags: Boolean Logic

EQUALS

Evaluates if the two passed values are equal.

Attributes
VALUE1: First value to compare. (Required.)

VALUE2: Second value to compare. (Required.)

Body
None

Returns
Boolean result.

Example

<*if*>

<*cond*>

<*equals value1='pretzels' value2='[*interest*]'/*>

<*/cond*>

 <*then*>Try Royal Gold Pretzels<*/then*>

<*/if*>

See also
Tags, Comparisons

EXPRESSION

Evaluates mathematical expression as described in body.

Attributes
None

Body
String expression containing:

Arithmetic operators including ‘+’, ‘-’, ‘*’, ‘/’ and ‘^’.

Brackets: ‘(‘,’)’.

Unary functions:

ABS - Absolute Value function

ACOS - Arc Cosine function

ACTAN - Arc Cotangent function

ASIN - Arc Sine function

ATAN - Arc Tangent function

BOX - Box function. If |a| < 1 return 1, else return 0.

CEIL - Ceiling function. Smallest whole number >= a.

COS - Cosine function

CTAN - Cotangent function

EXP - Returns exponential number e(2.718...) to power of a.

FLOOR - Floor function. Largest whole number <= a.

LN - Returns the natural logarithm (base e) of a.

LOG - Logarithm function. Returns logarithm (base 10) of a.

ROUND - Round function. Rounds by first adding 0.5.

SIN - Sine function

SINC - Sinc function

SQR - Square function

SQRT - Square Root function

TAN - Tangent function

Context variables surrounded by variable replacement tokens.

Numeric values (literals). (Note: All angles in radians, 0.0 -- Pi

Returns
Number with result.

Example

Year mod 4 =

<*expression*>

[*year*]-(floor([*year*]/4))*4

<*/expression*>

See also
Values and variables: Value types

FALSE

Returns a Boolean FALSE value.

Attributes
None

Body
None

Returns
Boolean FALSE value.

See also
Values and variables: Value types

FILEGET

Gets a local file and returns results.

Attributes
PATH: Relative path of the file within the configured file store. (Required.)

TYPE: Format of file: “text” or “binary” (defaults to text)

Body
None

Returns
File contents.

Sets
fileget:[ID:] error- String descriptor associated with any errors, empty if okay.

Example

<*setvar name='file-contents'*>

<*fileget path='[*filename*]'/*>
<*/setvar*>

FOR

Loops based on the specified range/limit, processing the body during each iteration. A loop count variable (“:” by default) holds the index of the current iteration. An optional attribute may be passed to specify an index variable name other than “:”.

Attributes
START: Number value for initial value of loop variable. (Required.)

STOP: Number value of last value for loop variable. (Required.)

MAX: Number value of maximum number of times to loop.

INDEX: Loop variable name to use instead of default “:”.

Body
Any tags/strings to process for each iteration of the loop.

Returns
Result from expanding appropriate children.

Contextual Tags
DO: Content to process for each list entry.

BREAK: Interrupts processing.

 Sets
During each loop iteration, the following variables are set (they will be deleted after processing):

“:” (or name determined by INDEX attribute)- Zero-based numeric index.

Example

<HTML>

<*!-- This code displays up to 100 user's names as the results of a SQL query.

- START and STOP set maximum boundaries.

- MAX ensures you don't display more values than were returned by the query. --*>

<*for

start='1'

stop='100'

max='[*sql:users:outcount*]'*>

[*sql:users:NAME:[*:*]*]

<*/for*>

</HTML>

See also
Tags: Control Flow

FOREACH

Loops over one or more lists specified by IN tags. At each iteration of the loop, the next entry is selected from each list and assigned to the variable specified by the list’s IN tag. An upper limit to the number of iterations may be set. If no limit is set, looping will occur until all lists have been fully processed. If lists are of different sizes, no variables will be assigned for lists for which entries have been processed already. The content of the DO tag will be processed once for each iteration of the loop, with a specified variable set for each list.

Attributes
MAX: Number value of maximum number of times to loop.

INDEX: Loop variable name to use instead of default “:”.

Contextual Tags
IN: Specifies a list to iterate over.

DO: Content to process for each list entry.

BREAK: Interrupts processing.

Body
None

Sets
During each iteration of the loop, the following variables are set (they will be deleted after processing):

“:” (or name determined by INDEX attribute)- Zero-based numeric index.

Variable for each IN list. Names are specified by the NAME attribute in each IN tag.

Returns
Result from processing DO content over each iteration of the loop.

Example

<*foreach*>

<*in name='lower'*>

<*split delimiter=','*>a,b,c,d,e,f<*/split*>

<*/in*>

<*in name='upper'*>

<*split delimiter=','*>A,B,C,D,E,F<*/split*>

<*/in*>

<*do*>[*foreach:index*]. [*lower*], [*upper*]

<*/do*>

<*/foreach*>

See also
Values and variables: Value types; Tags: Control Flow

FORWARD

Immediately stops processing of the current document and forwards to another document.

Attributes
None

Body
NAME: Name of querymap or object to forward to. Named “<CHANNEL>:<NAME>“. (Required.)

Example

<*forward name='main:destination'/*>
See also
Tags: Control Flow

FTP

(File Transfer Protocol) Transfers files over a TCP/IP network.

Attributes
server: The FTP server to connect to (Required).

dir: The directory on MS Plus to access (If not set, will default to ‘/’).

username: The username to use to log into the ftp server. If not specified, defaults to anonymous.

password: The password to use to log into the ftp server. If not specified, defaults to ??

command: The FTP command to run (Required).

Supported commands and their attributes:

filelist - to list files in a directory.

get - to retrieve a file.

There are several additional attributes to specify for the get command:

name: The name of the file (Required). This could conceivably include the path from the ftp root.

type: The type of the transfer (ascii or binary). If not specified, defaults to ascii.

encoding: The text encoding that the file to be retrieved is stored in. The text will be converted from this encoding into a Unicode string. Note that the type should be “binary” for this to work correctly. A list of valid encodings to use can be found at JavaSoft.

put: Not yet implemented.

Body
None

Returns
Nothing

Sets
ftp:[ID:]status- String describing the status of the last operation. This will contain the both status messages and the reply codes as defined in the FTP protocol.

ftp:[ID:]error- A Boolean value which is set to true if there was an error with the last operation, or false if there was no error.

Some variables are set specific to the command used:

get

ftp:[ID:]filecontent- The contents of the file retrieved. The type will depend: if the file transfer type was ASCII, then the contents will be a String. If the type was BINARY, then the contents will be an Object, and will need to be handled properly (i.e. casted in a vcprocessor to the correct type).

filelist

ftp:[ID:]results:[INDEX:]name- File name.

ftp:[ID:]results:[INDEX:]date- Timestamp of the file.

ftp:[ID:]results:[INDEX:]size- File size in kilobytes.

ftp:[ID:]results:[INDEX:]is-directory- Boolean value indicating if the file is a directory.

Example

<*ftp server='ftp.sample-weather-data-site.com'

command='get'

name='weather-data.dat'

dir='/pub/weatherdata/exampledata'/*>
See also
Tags: Queries

GREATERTHAN

Determines if the first value is greater than the second value.

Attributes
VALUE1: First value to compare. (Required.)

VALUE2: Second value to compare. (Required.)

Body
None

Returns
Boolean result. TRUE if first value is greater than the second is.

Example
<*if*>

<*cond*>

<*greaterthan

value1='1'

value2='[*var2*]'/*>

<*/cond*>

<*then*>1 is bigger than value of var2<*/then*>

<*/if*>

See also
Tags: Comparisons

HTTP

Make an HTTP request and return results

Attributes
ACTION: URL for request. (Required.)

METHOD: HTTP method to use for request (supported values: “GET”, “POST”). Defaults to “GET”.

INPUTENCODING: Encoding expected from the remote server.

CONNECTION: Connection object output by a previous HTTP call to use on this call.

Contextual Tags
VARPAIR: Denotes CGI parameters to the method call. It sets name/value pairs for CGI parameters, correctly URL encoding to accommodate spaces etc.

Body
Ampersand-delimited CGI parameters, if contextual VARPAIR tags are not used. (Still supported but use is discouraged as no character encoding is done).

Returns
Body returned by the request.

Sets
http:[ID:]body - Result body.

http:[ID:]status-code - Numeric status code of running the request.

http:[ID:]status-reason - String descriptor associated with status code.

http:[ID:]version - HTTP version of the response.

http:[ID:]effective-url - New URL if a redirect occurred.

http:[ID:]header:* - One variable for each HTTP header field (e.g., request:header:content-length set to “13753”).

Example

<*http id='ekimae'

inputencoding='EUC-JP'

action=
'http://ekimae.toshiba.co.jp/script.cgi'*>

<*varpair

name='from-station'*>

[*station-from*]<*/varpair*>

<*varpair name='to-station'*>

[*station-to*]<*/varpair*>

<*/http*>

See also
Transports: HTTP

IF

Processes the content of nested THEN or ELSE tag based on a Boolean condition.

Attributes
None

Contextual Tags
COND: Denotes condition to evaluate. The tag will also accept a Boolean value as the first entry in the tag content.

THEN: Contains body to process if the condition is true. (Required.)

ELSE: Contains body to process if the condition is false.

Body
None

Returns
Result of evaluating THEN or ELSE bodies

Example

<*if*>

<*cond*><*true/*><*/cond*>

<*then*>

TRUE is true!

<*/then*>

<*else*>

Uh oh, TRUE doesn't seem to be true.

<*/else*>

<*/if*>

See also
Tags: Boolean Logic
IN

Contextual tag used by the FOREACH tag to specify lists to iterate over, and the name of the variable to assign each entry to on each iteration.

Attributes
NAME- Name of variable to assign each entry of the list on each iteration of the FOREACH loop.

Body
List for iteration. White space is significant.

See also
Tags: Control Flow

Example

<*foreach*>

<*in name='letter'*>

<*split

delimiter=','*>a,b,c,d,e,f

<*/split*>

<*/in*>

<*do*>[*foreach:index*]. [*letter*]

<*/do*>

<*/foreach*>

INCREMENT

Increments the value of the passed variable by 1.

Attributes
NAME: Name of variable to increment. (Required.)

Body
None

Returns
Nothing

Example

<*increment name='my-number'/*>
See also
Values and variables: Value types

ISEMPTY

Returns a true value if passed value is an empty list or map, or is a null value.

Attributes
None.

Body
Value to test.

Returns
Boolean result.

Example
<*isempty*>

[*my-var*]

<*/isempty*>
ISNULL

Reports if passed value is null.

Attributes
None

Body
Value to test.

Returns
Boolean result.

Example

<*isnull*>[*my-var*]<*/isnull*>
ISTYPE

Reports if passed value is of the specified type.

Attributes
TYPE - Name of the value type for the tag’s body. This can be one of: string, Boolean, number, date, list, map, binary, or special.

Body
Value to test. If the value is null, ISTYPE will return false.

Returns
Boolean result.

Example

<*istype type='string'*>[*my-var*]<*/istype*>
LESSTHAN

Determines if the first value is less than the second value.

Attributes
VALUE1: First value to compare. (Required.)

VALUE2: Second value to compare. (Required.)

Body
None

Returns
Boolean result. True if first value is less than the second.

Example

<*if*>

<*cond*>

<*lessthan

value1='1'

value2='[*var2*]'/*>

<*/cond*>

<*then*>1 is smaller than value of var2<*/then*>

<*/if*>

See also
Tags: Comparisons

LIST

Builds a new list value based on the values passed in PARAM contextual tags.

Attributes
None

Contextual Tags
PARAM: Denotes values to insert into the newly created list

Body
None

Returns
New list value

Example

<*list*>

 <*param*>Entry #1<*/param*>

 <*param*>Entry #2<*/param*>

<*/list*>

See also
Values and variables: Value types

LISTADD

Adds an element to a variable with a list value. The index number of all subsequent entries will be shifted up by one.

Attributes
NAME - Name of variable with a list value to act on. If not set, a new list variable will be created. (Required.)

INDEX - Numeric index in the list to insert the element. Defaults to adding to the end of the list.

Body
Element to insert.

Returns
Nothing

Example

<*!-- Inserts a new string element to the end of

 variable my-list. --*>

 <*listadd

name='my-list'*>

My string element.

<*/listadd*>

See also
Values and variables: Value types

LISTJOIN

Returns a string by joining the elements of a list.

Attributes
DELIMITER: String to delimit elements of the list. (Required.)

Body
List to join.

Returns
String result.

Example

Entries in my list:

<*listjoin delimiter=','*>

[*my-list*]

<*/listjoin*>

See also
Values and variables: Value types

LISTREMOVE

Removes an element from a variable with a list value. The index value of all subsequent entries will be shifted down by one.

Attributes
NAME - Name of variable with a list value to act on. If not set, a new list variable will be created. (Required)

INDEX - Numeric index in the list to insert the element. (Required.)

Body

Returns

Example

<*!-- Removes second element from my-list variable. --*>

 <*listremove name='my-list' index='1'/*>
See also
Values and variables: Value types

MAP

Builds a new Map value based on the values passed in VARPAIR contextual tags.

Attributes
None

Contextual Tags
VARPAIR: Denotes a name/value pair to be added to the newly created Map. The names may be single or multi-level (colon-delimited).

Body
None

Returns
New Map value.

Example

<*map*>

<*varpair name='key1'*>Value #1<*/varpair*>

<*varpair name='key2'*>Value #2<*/varpair*>

<*varpair name='key3:0'*>Value #3<*/varpair*>

<*varpair name='key3:1'*>Value #4<*/varpair*>

<*/map*>

MAPKEYS

Returns a list of the keys in the passed map.

Attributes
None.

Body
Map to evaluate.

Returns
List of keys in the passed map.

Example

<*!-- Print all keys in a list. --*>

<*foreach*>

<*in name='key'*>

<*mapkeys*>[*my-map*]

<*/mapkeys*>

<*/in*>

<*do*>[*key*]<*/do*>

<*/foreach*>

MATCH

Performs regular expression string matches, returning true on matches. Portions of match can be set to variables (as in Perl matches).

Attributes
PATTERN: string to use as regular expression, specified in Perl5 native format: [m]/pattern/[i][m][s][x]. The m prefix is optional and the meaning of the optional trailing options are:

i - case insensitive match

m - treat the input as consisting of multiple lines

s - treat the input as consisting of a single line

x - enable extended expression syntax incorporating white space and comments

As with Perl, any non-alphanumeric character can be used in lieu of the slashes.

Body
String value to apply the PATTERN to.

Returns
Boolean result.

Sets
Variables will be set with the results, of the form match:[ID:][INDEX]. The first variable (index 0) will be the entire match. Subsequent variables will be matches for parenthesized sub-groups in the match string.

Example

<*if*>

<*cond*>

<*match

pattern='/^p/i'*>

[*username*]

<*/match*>

<*/cond*>

<*then*>

Your name begins with a 'P'.

<*/then*>

<*else*>

Your name does not begin with a 'P'.

<*/else*>

<*/if*>

See also
Tags: String manipulation

NOT

Returns the Boolean NOT of the body.

Attributes
None

Body
Boolean expression.

Returns
Boolean result.

Example

<*if*>

<*cond*>

<*not*>

<*true/*>

<*/not*>

<*/cond*>

<*then*>

Uh oh, FALSE doesn't seem to be false.

<*/then*>

<*else*>

FALSE is false!

<*/else*>

 <*/if*>

See also
Tags: Boolean Logic

NUMBER

Creates a number from the passed value.

Body
Value to convert to number. Integer and floating point values are accepted.

Returns
Number result.

Example

<*setvar name='my-date'*>

<*number*>104.9<*/number*>
<*/setvar*>

See also
Values and variables: Value types

NUMBERFORMAT

Converts a number (floating point or integer) value to a string.

Attributes
VALUE: Name of variable to format. (Required.)

Body
 Formatting string, in the following format:

pattern
 := subpattern{;subpattern}

subpattern := {prefix}integer{.fraction}{suffix}

prefix
 := ‘\\u0000’..’\\uFFFD’ - specialCharacters

suffix
 := ‘\\u0000’..’\\uFFFD’ - specialCharacters

integer
 := ‘#’* ‘0’* ‘0’

fraction
:= ‘0’* ‘#’*

Notation:

X* 0 or more instances of X

(X | Y) either X or Y.

X..Y any character from X up to Y, inclusive.

S - T characters in S, except those in T

The first subpattern is for positive numbers. The second (optional) subpattern is for negative numbers. (In both cases, ‘,’ can occur inside the integer portion--it is just too messy to indicate in BNF.)

Here are the special characters used in the parts of the subpattern, with notes on their usage.

Sym-
bol
Meaning

0
a digit

#
a digit, zero shows as absent

.
placeholder for decimal separator

,
placeholder for grouping separator.

E
separates mantissa and exponent for exponential formats.

;
separates formats.

-
default negative prefix.

%
multiply by 100 and show as percentage

?
multiply by 1000 and show as per mille

(
currency sign; replaced by currency symbol; if doubled, replaced by international currency symbol. If present in a pattern, the monetary decimal separator is used instead of the decimal separator.

X
any other characters can be used in the prefix or suffix.

‘
used to quote special characters in a prefix or suffix.

Notes

If there is no explicit negative subpattern, - is prefixed to the positive form. That is, “0.00” alone is equivalent to “0.00;-0.00”. If there is an explicit negative subpattern, it serves only to specify the negative prefix and suffix; the number of digits, minimal digits, and other characteristics are all the same as the positive pattern. That means that “#,##0.0#;(#)” has precisely the same result as “#,##0.0#;(#,##0.0#)”.

One or more digit characters must immediately follow the exponent character. Example: “0.###E0”. The number of digit characters after the exponent character gives the minimum exponent digit count; there is no maximum. Negative exponents are denoted using the same prefix and/or suffix specified for the number itself. The minimum number of integer digits is achieved by adjusting the exponent. The maximum number of integer digits, if any, specifies the exponent grouping. For example, 12345 is formatted using “##0.###E0” as “12.345E3”.

Illegal patterns, such as “#.#.#” or mixing ‘_’ and ‘*’ in the same pattern, will cause an error.

The grouping separator is commonly used for thousands, but in some countries for ten thousands. The interval is a constant number of digits between the grouping characters, such as 100,000,000 or 1,0000,0000. If you supply a pattern with multiple grouping characters, the interval between the last one and the end of the integer is the one that is used. So “#,##,###,####” == “######,####” == “##,####,####”.

Returns
The formatted number string in the precision specified.

Example

<*!-- Display the number, with a thousands separator and up to two fractional decimal places. --*>

<*numberformat

value='[*my-number*]'*> #,##0.##

<*/numberformat*>
See also
Values and variables: Value types

OPT

Processes the content of a nested DOPT tag based on a key value.

This tag is provided to easily accommodate devices with varying degrees of bandwidth. The DOPT tags denote alternate versions of text for more or less constrained devices. The algorithm for determining which item to select is:

· Determine the number of available options. If only one is available, add a blank option as the rightmost (most constrained) option.

· Retrieve the degree of constraint, which corresponds to the language in use.

· Positive numbers select from left to right, or from least constrained to most constrained. Negative numbers select from right to left, or from most constrained to least constrained.

· The positive number one (1) selects the least constrained item.

· The negative number one (-1) selects the most constrained item.

· The number zero (0) is equivalent to negative one (-1)

· Use the degree of constraint as an index into the options, where 1 selects the first item in the list, 2 the second and so on; -1 selects the last item, -2 selects the second to last and so on.

· A negative number may never select the left-most item.

· A positive number may never select the right-most item.

The following illustrates what the indexes should map to for a hypothetical five-(5) item list:

1st Item

(Least Constrained)
2nd Item
3rd Item
4th Item
5th Item

(Most Constrained)

1
2
3
4 (n
-1/0

-4 -> -n
-3
-2

Attributes
VALUE: Key value to use for selection. If not selected, the language-specific variable will be used.

Contextual Tags
DOPT: Holds contents for processing, based on a key value.

Body
None

Returns
Result of evaluating the contents of one DOPT.

Example 1

<*opt*>

<*dopt*>Driving<*/dopt*>

<*/opt*> Directions
Example 2

<*opt*>

<*dopt*> miles <*/dopt*>

<*dopt*> m <*/dopt*>

<*/opt*>

Example 3

<*opt*>

<*dopt*> Turn left <*/dopt*>

<*dopt*> Left <*/dopt*>

<*dopt*> L <*/dopt*>

<*/opt*>

NOTES:

In Example 1, Driving will only show up for languages that are not bandwidth constrained.

In Example 2, miles will show up for languages that are not bandwidth constrained, m will be used for any language with any degree of constraint.

In Example 3, Turn left, Left, or L will be selected based on the degree of constraint specified by the language.

See also
Language-related Issues

OR

Calculates logical OR of values returned by children tags. Processing will be short-circuited as soon as the return value can be determined.

Attributes
None

Body
A set of Boolean values, which will be used to calculate the result. White space is ignored.

Returns
Boolean result of ORing all children.

Example

<*if*>

<*cond*>

<*or*>

<*true/*><*false/*>

<*/or*>

<*/cond*>

<*then*>Success<*/then*>

<*else*>Failure<*/else*>

<*/if*>

See also
Tags: Boolean Logic

PARAM

Contextual tag that assigns a parameter to a parent tag.

Attributes
TYPE: Name of the expected value type for the tag’s body.

This can be one of: string, Boolean, number, date, list, map, binary, or special

Body
Value of the parameter.

Example

<*sql id='my-query'*>

<*body*>

select * from my_table

where name = ? and type = ?

<*/body*>

<*param*>Paul<*/param*>

<*param*>Engineer<*/param*>
<*/sql*>

PARAMDEF

Contextual tag that defines a parameter name and expected type to be matched with value later and type checked.

Attributes:
TYPE: Name of the expected value type for the tag's body. This can be one of: string, boolean, number, date, list, map, binary, or special.

NAME: Name of the local variable.

ACCEPTNULL: Boolean flag indicating whether or not this parameter may have a null value passed. (Optional.) This parameter defaults to false (meaning the parameter is required.)

Body:
None.

QUERYMAP

Processes a querymap. Querymaps may not be nested within a single querymap file.

Attributes
TYPE: Result type returned to enclosing querymap. (Optional.)

Contextual tags
PARAMDEF: Input parameter from caller document (Optional.)

RETURN: Exit current querymap and return value to caller document (optional.)

Body
Content to process.

Returns
Value defined by TYPE attribute or string if no type defined.

Example
<*querymap*>

<*setvar

name='modulus'*>123

<*/setvar*>

<*/querymap*>

<*querymap

type='string'*>

<*paramdef type='string' name='firstName'/*>

<*paramdef type='string' name='givenName'/*>

<*body*>

<*return*>The full name is:

[*local:givenName*], [*local:firstName*]

<*/return*>

<*/body*>

<*/querymap*>

REFBINARY

Generates a URL to a binary file.

Attributes
NAME: Binary name, of the format <channel>:<name>“. (Required.)

TYPE: Type of binary (e.g. “GIF”, “JPEG”). (Required.)

TRANSPORT: Transport to reference. The host and port of this transport will be used in the URL. If this is set, then the HOST, PORT, and SCHEME attributes cannot be set. (Optional.)

HOST: Host to use. If not specified, the current transport’s host will be used. (Optional.)

PORT: Port to use. If not specified, the current transport’s port will be used. (Optional.)

SCHEME: Scheme to use. If not specified, defaults to HTTP (Optional.)

SESSIONID: Defaults to true. Set to false to turn OFF the automatic addition of the session ID in the parameters list. This has no effect if the transport configuration setting, sessionIdLocation , is not equal to ‘cgiparam’. (Optional.)

Contextual Tags
VARPAIR: Denotes CGI parameters to the method call. It sets name/value pairs for CGI parameters, correctly URL encoding to accommodate spaces etc.

Body
None

Returns
URL to the binary file.

Example

<IMG SRC=“<*refbinary name='main:icon'/*>“>

See also
Transports: HTTP Tags: Reference Tags

REFCONTENT

Generates a URL for a content request.

Attributes
NAME: Content name, of the format “<channel>:<name>“. (Required.)

TRANSPORT: Transport to reference. The host and port of this transport will be used in the URL. If this is set, then the HOST, PORT, and SCHEME attributes cannot be set. (Optional.)

HOST: Host to use. If not specified, the current transport’s host will be used. (Optional.)

PORT: Port to use. If not specified, the current transport’s port will be used. (Optional.)

SCHEME: Scheme to use. If not specified, defaults to HTTP (Optional.)

SESSIONID: Defaults to true. Set to false to turn OFF the automatic addition of the session ID in the parameters list. This has no effect if the transport configuration setting, sessionIdLocation , is not equal to ‘cgiparam’. (Optional, but see the example below for notes on forms.)

Contextual Tags
VARPAIR: Denotes CGI parameters to the method call. It sets name/value pairs for CGI parameters, correctly URL encoding to accommodate spaces etc.

Body
None

Returns
URL for a content request.

Example

<*!-- Passes cgi-variables. Uses current transport settings for scheme, host, and port --*>

<*refcontent name='main:show-me'*>

<*varpair

name='my-cgi-param-1'*>apples

<*/varpair*>

<*varpair

name='my-cgi-param-2'*>oranges

<*/varpair*>

<*/refcontent*>

<*!-- uses scheme, host, and port attributes to set up a URL pointing to a(supposedly) SSL-enabled server --*>

<*refcontent

scheme='https'

host='secure.premion.com'

port='433'

name='main:secure-page'

/*>
<!-- In forms with method 'POST' and when sessionIdLocation is equal to 'cgiparam', you must do the following to place the session ID in the body of the request, instead of in the URL. -->

<form

method=“post”

action=“<*refcontent

name='channel:screen'

sessionid='false'

/*>“>

<!-- The 'sid' below should be whatever you are calling your session ID parameter (as set with 'sessionIdParamName' in config file). -->

<input

type=“hidden”

name=“sid”

value=“[*request:auth:session-id*]”>

</form>

See also
Transports: HTTP: Tags: Reference Tags

REFLOGOUT

Generates a URL for a logout request.

Attributes
None

Contextual Tags
VARPAIR: Denotes CGI parameters to the method call. It sets It sets name/value pairs for CGI parameters, correctly URL encoding to accommodate spaces etc.

Body
None

Returns
URL for a logout request.

Example

<A HREF= “<*reflogout/*>“>Logout.

See also
Transports: HTTP: Tags: Reference Tags

REPORT

Prints information to the debugger. It allows for types of information, such as warnings or errors.

Attributes
TYPE: Type (info, warning, error). Defaults to info.

TITLE: Title for report. (Required.)

Body
Text to be displayed.

Returns
Nothing

Example

<*report

type='info'

title='Greeting from querymap'*>

Hello to all you debuggers out there.

<*/report*>

See also
Tags; Development Tags

RETURN

Sets value to be returned for an enclosing querymap.

Body
Return value for the querymap.

ROUTE

Find a slave server to route to. Update, insert, and delete a slave server.

ROUTE is used for load balancing requests and managing a server farm. The tag relies on the existence of the store configuration [store:serverfarm]. The store must contain the database table server_farm. MS Plus must be configured to include utils. ServerFarmManager in its managers list.

Example
In this example, we show the QM and CT that are used to route incoming requests.

First, the querymap (e.g., main+QM.null.null):

<*querymap*>

<*!-- Get next available slave --*>

<*route action=“next”/*>
<*!-- There may not a slave to route to --*>

<*if*> <*match name='route:host' value=''/*>

<*then*>

<*!-- Route back to myself, but to a friendly noslave page --*>

<*setvar

name='route:host'*>

[*request:http:header:host*]

<*/setvar*>

<*setvar

name='route:port'*>8080

<*/setvar*>

<*setvar

name='route:relURL'*>/

<*/setvar*>

<*/then*>

<*else*>

<*setvar

name='route:relURL'*>

[*request:http:path*]

<*/setvar*>

<*/else*>

<*/if*>

<*setvar

name=“output:http:header:location”*>

http://[*route:host*]:[*route:port*]

[*route:relURL*]

<*/setvar*>

<*setvar

name=“redirectedURL”*>

[*output:http:header:location*]

<*/setvar*>

<*/querymap*>

Second, the content template (e.g., main+CT .null.HTML):

<*contenttemplate*>

<html> <head>

<title>Rerouting to balance load...</title>

</head>

<body>

<meta http-equiv=“refresh”

content=“0;

url=[*redirectedURL*]”>

The document has temporarily moved to

[*redirectedURL*].

</body>

</html>

<*/contenttemplate*>

Third, the store with the server_farm table is located. It must be named (store:serverfarm).

[store:serverfarm]

type = store.DBStore

driverClass = oracle.jdbc.driver.OracleDriver

url=jdbc:oracle:thin:@WIS:1521:athena

loginName=myUsername

password=myPassword

Fourth, make sure to include utils ServerFarmManager to the managers list in your configuration file.

[main]

Managers to include ServerFarmManager

managers = utils.ResourcePoolManager, \

 utils.ServerFarmManager, \

 utils.ThreadPoolManager, \

 store.StoreManager, \

 utils.ServiceManagerManager, \

 transport.TransportManager, \

 xml.XmlProcessorManager

Attributes
ACTION: There are five types of action: next, list, insert, delete, and update. Next returns “route:host” and “route:port” for slave server to route to. List returns a list of slave servers. Update to update an existing slave server. Insert to add a new slave server. Delete to delete an existing slave server. (Required.)

HOSTNAME: Specifies server for insert, delete, and update commands.

PORT: Specifies port for server for insert and update commands.

ACTIVE: Specifies if server is active for insert and update commands. String should be of the form “true” or “false”.

ROUTE_PERCENTAGE: Specifies percentage of times a server should be routed to for insert and update commands.

Body
None

Returns
Nothing

Sets
If action is next, returns route:host (e.g., www.brandx.com) and route:port (e.g., 8080). If there is no server to route to, both would point to empty string (i.e.,).

If action is list, returns route:size the number of slaves.

For the following discussion, this is known as n.

route:host:0 to route:host:n-1.

route:port:0 to route:port:n-1.

route:active:0 to route:active:n-1.

route:route_percentage:0 to

route:route_percentage:n-1.

RUNQUERYMAP

Processes a querymap in place.

Attributes
NAME: Name of the querymap to insert, of the format <channel>:<name> (Required.)

Body
None

Returns
Nothing

Example

<*runquerymap name='main:run-querymap'/*>
See also
Tags: Control Flow Transaction processing: Authentication

RUNTEMPLATE

Processes a content template in place.

Attributes
NAME: Name of the content template to insert, of the format “<channel>:<name>“ (Required.)

DEVICE: Device key to use to get content template.

LANGUAGE: Language key to use to get content template.

Body
None

Returns
Result from processing content template.
Example

<*runtemplate name='main:run-template'/*>

See also
Tags: Control Flow Transaction processing: Authentication

SETEVENT

Sets an event for the current user. When a new event is created, a new unique identifier will be created for the event and returned. If the same user adds two events at exactly the same time, the returned identifier may not be correct.

Attributes
EVENTID: Identifier for the event to change. If not set, a new event will be created.

TIME: Date for the event to occur. (Required.)

RUN: Channel and name of querymap to run when processing event (e.g. “events:do-event”). (Required.)

REPEATPERIOD: String specifying interval to repeat on. Format is a number followed by units (e.g. “3 weeks”). Valid units are “year”, “month”, “week”, “day”, “hours”, “minutes”, and “seconds”.

REPEATCOUNT: Number of iterations for a repeating event. If REPEATPERIOD is specified, defaults to infinite. Otherwise, defaults to zero.

EXPIRATIONTIME: Specific absolute date at which the event will expire.

EXPIRATIONPERIOD: String specifying interval before event expires. Format is a number followed by units (e.g. “3 weeks”). Valid units are “year”, “month”, “week”, “day”, “hours”, “minutes”, and “seconds”.

Body
None

Returns
Event ID

Contextual Tags
VARPAIR: Specifies parameters to pass to the event when it is fired.

Example

<*setevent

id='monthly-unlimited'

time='[*date-and-time*]'

repeatperiod='1 month'

run='my-channel:screen-to-run'/*>
See also
Events: Timed Events

SETVAR

Sets a variable, based on the specified name, attributes, and value.

Attributes
NAME: Name of variable to set. (Required.)

PURGESPACE: If “TRUE”, remove leading/trailing white cap and multiple white space in interior.

VALUE: Name of variable to use as value.

TYPE: Name of the expected value type for the tag’s body. This can be one of: string, Boolean, number, date, list, map, binary, or special

Body
Value to assign to variable (if VALUE attribute is not used). If the body contains a single non-String value surrounded by white space, the white space is removed and the non-String value is used as the body’s value. In all other cases, the contents of the body are converted to a single String value.

Returns
Nothing

Example

<*setvar name='favorite-color'*>blue

<*/setvar*>
See also
Variables and Values: Variables

SIZE

Returns an integer with the size of the passed value. For lists and maps, the number of top-level elements is returned. For strings, their length in characters is returned. For binaries, the number of bytes is returned. If the passed value is null, 0 is returned. For other value types, an error occurs.

Attributes
None

Body
Map, list, string, or binary value.

Returns
Integer with size.

Examples

My variable has a size of

<*size*>

[*my-var*]

<*/size*>
See also
Values and Variables: Value Types: Tags: String Manipulation

SPLIT

Scans a variable for a specified delimiter (string), and assigns each delimited substring to a variable.

Attributes
DELIMITER: String to use as delimiter.

PATTERN - String used to perform the split, taking a pattern specified in Perl5 native format. The format is specified as:

[m]/pattern/[i][m][s][x]

The m prefix is optional and the meaning of the optional trailing options are:

i - perform a case insensitive match

m - treat the input as consisting of multiple lines

s - treat the input as consisting of a single line

x - enable extended expression syntax with white space and comments

As with Perl, any non-alphanumeric character can be used in lieu of the slashes.

Either DELIMITER or PATTERN may be given, but not both.

If neither DELIMITER nor PATTERN is specified, the split is performed in the default Perl manner, splitting on all white space.

If both attributes are specified, an error occurs.

Either DELIMITER or PATTERN may be given, but not both.

If neither DELIMITER nor PATTERN is specified, the split is performed in the default Perl manner, splitting on all white space.

If both attributes are specified, an error occurs.

Body
String value to split.

Returns
List with result.

Sets
Variables will be set with the results, of the form split:[id]:[index]. An additional variable.

Example

<*foreach*>

 <*in name='letter'*>

<*split

delimiter=','*>a,b,c,d,e,f

<*/split*>

 <*/in*>

 <*do*>[*foreach:index*]: [*letter*]

 <*/do*>

<*/foreach*>

See also
Tags: String Manipulation

SQL

Queries a database with the standard or prepared statement SQL string in its body and sets results in the request variable context. If the SQL string begins with ‘select’, it is executed as a query, otherwise it is executed as an update. For SQL prepared statements, PARAM specifies the prepared statement values.

Attributes
ROWLIMIT: Maximum number of rows to be returned.

STORE: Name of store to query against (if other than default store).

ACCESSOR: Accessor type to query against (if other than default store). This allows querying to the store that is currently configured for a service and data type. The type should be specified as a string with the accessor interface name. The current service will be used unless it is overridden with the service attribute.

SERVICE: Overrides the service used to get the accessor. Should be specified by name.

Contextual Tags
PARAM: Denotes values to bind to SQL statement, in the same order that they appear in the body.

Body
String with valid SQL query with one or more arguments. An argument is denoted by “?”. For example, “select from usertable where name = ? and phonenumber = ?”. It should It should not be followed with a semicolon.

Returns
List with results. Each entry in the list represents a row as a map of column names to values.

Sets
sql:[ID:]results- Same as return value.

sql:[ID:]error- Contains any SQL error that occurred.

Example
<*sql id='my-query'*>

<*body*>

select * from my_table

where name = ? and type = ?

<*/body*>

<*param*>Paul<*/param*>

<*param*>Engineer<*/param*>

<*/sql*>

STRING

Forces conversion of all elements in its body to strings and returns the concatenated results.

Attributes
None

Body
Elements to convert to strings.

Returns
String with results.

Example
<*setvar name='date-string'*>

<*body*>

<*string*>

[*my-date*]

<*/string*>

<*/body*>

<*/setvar*>

See also
Values and variables: Value types

STRINGFORMAT

Formats the passed string.

Attributes
LIMIT: Limits the number of characters displayed.

ELLIPSIS: Adds an ellipses (...) to the end of the string if TRUE.

PURGESPACE: Trim leading/trailing white space and consolidate (compact) internal spaces, if TRUE (Default FALSE)

PAD: will add the appropriate number of spaces to the string to ‘pad’ it out to the number provided.

TOUPPER: changes the case of the string to all uppercase, if TRUE (Default FALSE)

TOLOWER: changes the case of the string to all lowercase, if TRUE (Default FALSE)

Body
String to format.

Returns
Results of formatting.

Example
<*!-- The following will limit the headline length to 20 and display an ellipsis at the end if cropping occurs. --*>

<*stringformat limit='20' ellipsis='true'*>

<*body*>

[*news-headline*]

<*/body*>

<*/stringformat*>

See also
Tags: String Manipulation

SUBSTITUTE

Performs a replacement on the passed string, either using a direct string match or using a regular expression pattern.

Attributes
NAME - Name of variable to act on. If set, the value of the variable will be acted on, and the results will be assigned to the same variable.

FROM - String to replace.

TO - New string to replace with.

PATTERN - String used to perform the replacement, taking a pattern specified in Perl5 native format. The format is specified as:

s/pattern/replacement/[g][i][m][o][s][x]

The s prefix is mandatory and the meaning of the optional trailing options are:

g - Substitute all occurrences of pattern with replacement. The default is to replace only the first occurrence.

i - perform a case insensitive match

m - treat the input as consisting of multiple lines

o - If variable interpolation is used, only evaluate the interpolation once (the first time). The default is to compute each interpolation independently.

s - treat the input as consisting of a single line

x - enable extended expression syntax incorporating white space and comments

As with Perl, any non-alphanumeric character can be used in lieu of the slashes.

Contextual Tags
PARAM: Hold strings with regular expression patterns to apply in sequence. Uses same syntax as PATTERN attribute.

If PATTERN attribute is also specified, it will be applied before all of those specified in PARAM tags.

Body
String value to use (if NAME is not used).

Returns
String result of substitution.

Example
<*!-- Converts all white space strings in the passed value to a single space. --*>

<*substitute

pattern='s/\s+/ /g'*>[*my-variable*]

<*/substitute*>

See also
Tags: String Manipulation

SUBSTRING

Returns a substring of the passed string.

Attributes
START: Character position to start at.

STOP: Character position to stop at.

Body
String to act on.

Returns
Substring

Example
<*!-- The following will return the string “456” --*>

<*substring

start='4'

stop='7'*>0123456789

<*/substring*>
See also
Tags: String Manipulation

SWITCH

Processes the content of one in a set of nested tags, based on a passed value. The value is assigned to a variable, so that arbitrary Boolean expressions in CASE statements can access it.

Attributes
VALUE: Value to use in determining which CASE (or DEFAULT) to process. (Required.)

INDEX: Variable name to use for value instead of default “:”. The value is set to a variable since CASEs may be matching with regular expressions and need to act on the exact value.

Contextual Tags
CASE: Denotes value to evaluate against and body to process if a match occurs.

DEFAULT: Contains body to process if no other match is made.

Body
None

Returns
Result of evaluating nested tag.

Example
<*switch value='[*my-value*]'*>

<*case

value='1'*>

My value is 1!

<*/case*>

<*case

value='2'*>

My value is 2!

<*/case*>

<*default*>

My value sure isn't 1 or 2!

<*/default*>

<*/switch*>

<*setvar

name='day-of-the-week'*>

<*dateformat

value='[*system:timestamp*]'*>

EEEE

<*/dateformat*>

<*/setvar*>

<*switch value='[*day-of-the-week*]'*>

<*case

pattern='/^s/i'*>

Happy weekend! It's [*:*].

<*/case*>

<*default*>It's [*:*]. The workweek drags on.

<*/default*>

<*/switch*>

<*switch

index='my-index'

value='[*day-of-the-week*]'*>

<*case

pattern='/^s/i'*>

Happy weekend! It's [*my-index*].

<*/case*>

<*default*>

It's [*my-index*]. The workweek drags on.

<*/default*>

<*/switch*>

See also
Tags: Control Flow

THEN

Contextual tag for the IF tag that holds the content to evaluate if a condition is true.

Attributes
None

Body
Any content to evaluate.

See also
Tags: Boolean Logic

Example

<*if*>

<*cond*>

<*true/*>

<*/cond*>

<*then*>

<*report type=“info” title=“Boolean report”*>True is true!<*/report*>

<*/then*>

<*/if*>

TRUE

Returns a Boolean TRUE value.

Attributes
None

Body
None

Returns
Boolean TRUE value.

Example

<*if*>

<*cond*>

<*true/*>

<*/cond*>

<*then*>

TRUE is true!

<*/then*>

<*else*>

Uh oh, TRUE doesn't seem to be true.

<*/else*>

<*/if*>

See also
Values and Variables: Value Types
VARDEF

Returns Boolean value if specified variable is defined.

Attributes
NAME: Name of variable. (Required.)
Body
None
Returns
Boolean TRUE if variable is defined, FALSE if not.
Example

<*if*>

<*cond*>

<*vardef name='my-var'/*>

<*/cond*>

<*then*>

My variable exists.

<*/then*>

<*else*>

 Alas, my variable had an early demise.

<*/else*>
<*/if*>
See also
Tags: Comparisons
VARPAIR

Contextual tag that assigns a name-value pair to a parent tag.

Attributes
NAME: Name of attribute to set. (Required.)

TYPE: Name of the expected value type for the tag’s body. This can be one of: string, Boolean, number, date, list, map, binary, or special.
Body
Value to assign to parameter. White space is significant.
Example

<*http action='http://www.funkysite.com/runme'*>

<*varpair

name='cgivar1'*>[*value1*]

<*/varpair*>

<*if*>

<*cond*>

<*vardef name='value2'/*><*/cond*>

<*then*>

<*varpair

name='cgivar2'*>[*value2*]

<*/varpair*>

<*/then*>

<*/if*>

<*/http*>

See also
Transports: HTTP: Tags: Reference Tags: Events: Timed events

VCPROCESS

Calls a Java class to perform processing on the current transaction variable context.

Attributes
PROCESS: Full path name of the processor class that will act on the varcontext. All processor classes must implement VarContextProcessor. (Required)

Body
None

Returns
Nothing

Sets
vcprocess:[id:]status- Status of running processor.

Any variables set by the processor.

Example
<*!-- Run an example content loader class. --*>

<*vcprocess

id=“process”

process=“vcprocessor.server.contenthandler.CSVFileProcessor”/*>
WHILE

Loops based on a Boolean condition, processing its DO clause on each iteration.

Attributes
None

Contextual Tags
COND: Denotes condition to evaluate. The tag will also accept a Boolean value as the first entry in the tag content.

DO: Contains body to process on each iteration. (Required.)

BREAK: If this tag is processed inside a DO, processing will stop.

Body
None

Returns
Concatenated results of all DO processing.

Example
<*while*>

<*cond*>

<*lessthan

value1='[*value-1*]'

value2='[*value-2*]'/*>

<*/cond*>

<*do*>

<*increment name='value-1'/*>

<*report title='Processing loop.'”*>

 Value 1 is “[*value-1*]

 <*/report*>

<*/do*>

<*/while*>

See also
Tags: Control Flow

MS Plus Configuration

MS Plus is a multi-function server with many components knit together, not a monolithic single-function server. Nearly everything is changeable and can be tailored to users’ needs.

MS Plus is configured via multi-part .config file

SLIDE 40
Configuration Decisions

To configure a system, the Service Developer and System Administrator must answer major questions, such as:

· Which and how many devices to support?

· Which and how many networks to support?

· Are services all anonymous, or user-based?

· Where are data stored?

· What are the system monitoring requirements?

· What are the service administration requirements?

SLIDE 41
Configuration Devices

· A which and how many device drives?

· Which and how many content languages?

· Which and how many transport protocols?

· Which and how many form factors needed?

· What device-identification code needed?

Sometimes choice runs opposite way

SLIDE 42
Configuration Networks

Choice of networks drives

· Number of transports?

· Types of transports?

· Number of servers?

SLIDE 43
Configuration Users

Anonymous/user-based drives

· What are the access control needs?

· What storage required for user information?

· What are the transport authentication needs?

SLIDE 44
Configuration Data Storage

(Empty Slide)

Figure 4. Perforce Screen Showing Columns in user_info

(insert Perforce screen here)

Figure 3. Perforce Screen showing 3-Level Hierarchy

(insert Perforce screen here)

� The abstract class is a class created as a master structure, allowing definitions of subclasses of the abstract class with their own variations, which create the actual objects.

� Variables must be always be defined for each request and the developer can assume their existence.

� A channel is a group of all objects necessary to generate screens and binaries. These objects may include formatting, layout, logic, and content necessary to generate client-visible objects. Channels tend to be defined by function, such as accessing news information or configuring user’s settings. A channel may have static or dynamic content associated with it.

� We use Perforce™ to manage MS Plus software configurations. Perforce™ is a software configuration management (SCM) system, built upon client/server architecture, that stores and displays a desktop user’s workspace.

� SMS time outs should consider the often slow network transfer rate and response/delivery times.

� An attribute in an XML document is a sub element defined within an element.

� A root tag is a generalizable element that has no parents in a given generalization hierarchy.

� To improve efficiency, we’ve performed content loading via FTP from a Java class, rather than a querymap, because writing a regular expression to parse CSV is time-consuming and difficult.

�PAGE \# "'Page: '#'�'" �Page: 1���this comment just opens the comments window

�PAGE \# "'Page: '#'�'" �Page: 3���Move detailed TOCs to their own section

�PAGE \# "'Page: '#'�'" �Page: 21���Why is this important to say here?

�PAGE \# "'Page: '#'�'" ��True?

�PAGE \# "'Page: '#'�'" �Page: 22���Anything else?

�PAGE \# "'Page: '#'�'" �Page: 24���Accurate?

�PAGE \# "'Page: '#'�'" �Page: 24���Needs clarification?

�PAGE \# "'Page: '#'�'" �Page: 24���Sessions optional?

�PAGE \# "'Page: '#'�'" ��Is this implemented?

�PAGE \# "'Page: '#'�'" �Page: 29���Are these prefixes – they’re in the middle of the string?

�PAGE \# "'Page: '#'�'" ��Needs example.

�PAGE \# "'Page: '#'�'" ��Needs example.

�PAGE \# "'Page: '#'�'" �Page: 34���This conflicts with previous denial of DTD.

�PAGE \# "'Page: '#'�'" �Page: 34���Needs example here.

�PAGE \# "'Page: '#'�'" �Page: 34���Typically? Not always?

�PAGE \# "'Page: '#'�'" �Page: 41���Add a few soothing words as intro, then refer to more technical sections.

�PAGE \# "'Page: '#'�'" �Page: 41���Add a few soothing words as intro, then refer to more technical sections.

�PAGE \# "'Page: '#'�'" �Page: 43���Independent or dependent?

�PAGE \# "'Page: '#'�'" �Page: 44���Because…?

�PAGE \# "'Page: '#'�'" �Page: 48���Needs example.

�PAGE \# "'Page: '#'�'" ��?

�PAGE \# "'Page: '#'�'" �Page: 50���accurate? make sense? Ask Ambrose.

�PAGE \# "'Page: '#'�'" �Page: 57���the above diplicates what is in the table

�PAGE \# "'Page: '#'�'" �Page: 63���needs comment to describe this code

�PAGE \# "'Page: '#'�'" �Page: 69���This section needs clarification

�PAGE \# "'Page: '#'�'" �Page: 70���Why is this mentioned? What are its benefits?

�PAGE \# "'Page: '#'�'" �Page: 70���Needs clarification.

�PAGE \# "'Page: '#'�'" ��Where?

�PAGE \# "'Page: '#'�'" ��Insert reference here.

�PAGE \# "'Page: '#'�'" �Page: 75���Convert table to paragraph format.

�PAGE \# "'Page: '#'�'" �Page: 75���Explain.

�PAGE \# "'Page: '#'�'" �Page: 76���Explain.

�PAGE \# "'Page: '#'�'" �Page: 76���Explain.

�PAGE \# "'Page: '#'�'" �Page: 77���What if it can’t?

�PAGE \# "'Page: '#'�'" �Page: 77���Such as?

�PAGE \# "'Page: '#'�'" �Page: 82���Reword this.

�PAGE \# "'Page: '#'�'" �Page: 131���This section was part of Adam’s slide presentation – moved to the end to save it – not sure it belongs in the developer’s materials.

�PAGE \# "'Page: '#'�'" �Page: 131���Clarify.

Brandx

DRAFT

_1034519470.vsd

_1034519589.vsd

_1034519817.vsd

_1033295155.vsd

_1033474244.vsd

_1030789700.vsd

_1032773425.vsd

_1030784750.vsd

