
Page 1 of 34

/ 4.3 email transport/9/22/04

S E R V E R FU N C T I O N A L I T Y D OC U M E N T

E M A I L T R A N S P OR T

4.3. Email Transport

4.3.1. Requirements

This document covers four implementations of email transports:

• POP3 (receive)

• SMTP (receive)

• SMTP (send)

• Log (send)

Each implementation will be discussed in detail later in this section. First, we will discuss

matters that affect them all. Generally, the job of an email transport is to either:

• receive incoming messages via querymaps and POP3 transport, then send the

information to another MS+ module, OR,

• send outgoing messages requested by another module via SMTP transport (receive

the request, format the message, and send it to the external system)

(See figure below.)

(email_overview_send_receive)

Mike
This sample contains a few pages fron the Email Transport section of the Server Functionality Document. (See Acrobat bookmarks.)

Mike Hayden

More samples at
http://www.SeniorManagementServices.com/about-mike-hayden.html#smpl_Index

PS: To collect your FREE GIFT ($29 value), find and click the hot links in this document.

http://www.SeniorManagementServices.com/7-steps-booklet-request.html

Page 2 of 34

/ 4.3 email transport/9/22/04

To do this, the transport must do the following:

• listen for and detect a request

• call the appropriate request handler, which will create an MS++ internal command

and link the command to the specified threadpool

• optionally, send (dispatch) a message to a telecommunications carrier

Further, you must properly configure the MS+ email transports, via “config files.”

Each email transport has its own configuration settings, explained in this section.

MS+ interacts with other servers to send or receive, process, and format email messages

only. In other words, MS+ is not a full-service email server that can interact directly with

email clients that require communication with a full-service email server. When email

comes into MS+, it is meant to be processed by MS+ (as opposed to delivery to an email

client such as Eudora or Outlook).

However, MS+ can act like an email client by issuing client-like POP3 requests to ask a

server, “What email do I have?” Moreover, MS+ can accept email from another server

via SMTP.

NOTE: MS+ does not support IMAP – and therefore cannot get messages using IMAP.

You will find the Java programs for the email transports in the transport/email folder

(see figure below). NOTE: Your ROOT FOLDER will likely be named something other

than server_src Folder.

4.3.1.1. MS+ Email Transports

As mentioned, MS+ provides four implementations of email transports (details later)

as follows:

• POP3 (receive) Pop3Listener

• SMTP (receive) SmtpListener

• SMTP (send) SmtpDispatcher

http://www.SeniorManagementServices.com/7-steps-booklet-request.html

Page 3 of 34

/ 4.3 email transport/9/22/04

• Log (send) EmailLogDispatcher

Each implementation supports single- and multi-part messages (example: file

attachments) for both sending and receiving.

(NOTE: Currently, the SMTP receive transport supports only single-part messages.)

MS+ handles email as a request. Action taken by MS+ will differ depending on how the

Service Developer writes a service, as follows:

• Request model: MS+ receives incoming email, does some processing to fulfill the

request then responds to the user with email.

• Content loading model: MS+ processes email and stores the email’s data as content

(most likely stored in database). That data is then available to requests by other

transports (such as SMS).

4.3.1.2. Typical Email / MS+ Interactions

From a Service Developer’s point of view, the question is:

• Does email come to direct to MS+ acting as an SMTP email listener? (or)

• Does email come to MS+ via intermediate, full-service mail server where MS+ polls

server for messages via POP3?

Figure below shows these two ways:

http://www.SeniorManagementServices.com/7-steps-booklet-request.html

Page 4 of 34

/ 4.3 email transport/9/22/04

SMTP is used to send messages. Figure below shows how an email client on Other

Network sends a message to a mobile device via MS+ presuming viewing through HTTP

on device. This requires building a service to do so:

• Email client sends message to its server via SMTP

• Email server receives messages

• Email server then sends message across Internet to MS+ via SMTP (uses address

geoworks.com to send to mail.geoworks.com)

• MS+ server stores message until user prompts, via mobile device via http (or POP3),

“Any new messages?”

Email clients query a POP3 server for waiting messages using POP3. The figure below

shows various ways that messages are routed from/to various devices using HTTP, SMS,

SMTP and POP3 protocols.

From left to right: Notice how mobile devices can send messages via MS+ to other

mobile devices or email client.

http://www.SeniorManagementServices.com/7-steps-booklet-request.html

Page 5 of 34

/ 4.3 email transport/9/22/04

From right to left: Notice how mobile devices or email client can send messages to

other mobile devices via MS+.

4.3.1.3. Request Translators

MS+ currently supports three email request types:

• text keyword

• message

• generic

Remember that a request type is an abstract message type that may be relevant across

transport types, for example, a text keyword request type can be used for SMS or email.

Text Keyword: For a text keyword request, MS+ determines the receiving user based on

the destination address of the incoming email. (See Text Keyword Request flowchart

below.)

(email_text_keyword_request)

MS+ then creates an authenticated session for that user by searching the

USER_VALIDATION table for entries where:

http://www.SeniorManagementServices.com/7-steps-booklet-request.html

Page 7 of 34

/ 4.3 email transport/9/22/04

1. textual message bodies in character sets other than US-ASCII,

2. an extensible set of different formats for non-textual message bodies,

3. multi-part message bodies, and

4. textual header information in character sets other than US-ASCII.

Thus, MIME is a common method for transmitting non-text files via Internet email

(email originally designed for ASCII text).

MIME uses one of two techniques to encode non-text files for sending and to decode

non-text files back to original format for receiving. (See base64 and quoted printable

encoding, below.) A MIME header is added to the non-text file; the header specifies

the type of data and encoding technique used.

S/MIME (Secure MIME) adds RSA encryption for secure transmission.

MIME type, a file identification derived from MIME, identifies the contents of the

file. MIME types, embedded in email messages, define the content of attachments.

Web servers send the MIME type to a requesting browser so the browser can launch

the appropriate helper application or plug-in.

MIME “Content Type” separates type and subtype with a slash; for example,

text/plain and image/gif. The major types are application, audio, image,

text, and video. Application refers to a variety of formats; for example,

application/x-pdf refers to Adobe Acrobat documents, and application/octet-

stream refers to an .EXE file. (See base64, quoted printable encoding, and Wincode.)

• base64 is an encoding technique that converts binary data into ASCII text and vice

versa, and is one of two techniques used by MIME. Base64 divides three 8-bit bytes

of the original data into four 6-bit units, which it represents as four 7-bit ASCII

characters. This typically increases the original file by about a third. (See quoted

printable encoding below.)

• quoted printable encoding is an encoding technique that converts binary data into

ASCII text and vice versa and is one of the techniques used by MIME. This technique

is good for text that contains an occasional 8-bit character. The 7-bit text is kept the

same, and only the 8-bit text is encoded. (See base64 above.)

Page 9 of 34

/ 4.3 email transport/9/22/04

4.3.2. POP3 (Receive) Transport (Pop3Listener and Pop3RequestHandler)

4.3.2.1. Syntax

All transports are setup via Config files by Main during system initialization (see

examples herein). After that, transports are invoked automatically as needed by triggers

(hardware interrupts).

Pop3Listener is called by Main via InitializationBlockade.open. Once invoked,

Pop3Listener calls Pop3RequestHandler to handle the request.

4.3.2.2. Public Methods

Pop3Listener

Pop3RequestHandler

init

start

listen

parse

stop

4.3.2.3. Purpose of POP3 Transport

The purpose of Pop3Listener, based on JavaMail, is to:

• initialize with direct configuration parameters

• set server and account settings

• poll for incoming messages from a single account

• translate from appropriate character encoding

• dispatch new arriving messages to Pop3RequestHandler

The purpose of Pop3RequestHandler is to handle email requests using POP3 by

running the request handler on its own thread.

Notes: POP3 (Post Office Protocol, v 3) is a standard mail server protocol

commonly used on the Internet. The mail server stores incoming email until users

Page 12 of 34

/ 4.3 email transport/9/22/04

pollRate Specifies the number of seconds to wait before polling the

email server, usually 10 (seconds).

Following are four sample config files that receive POP3 email [bold emphasis added for

ease of reading]:

##

[transport:core-test-pop3].

Always assign a transport to a threadpool.

threadPool = main

listener specifies the class to act as the email listener.

listener = transport.email.pop3.Pop3Listener

service provides lists of stores, often needed by transports.

service = general-test

requestTranslators specifies the type of translation performed

on the incoming email.

requestTranslators = transport.email.EmailToTextKeywordTranslator

loginType is required for authenticating email users on an

email transport. The user must have an entry in the

USER_VALIDATION table with a LOGIN_TYPE of ‘email’ for this

to work.

loginType = email

listenerServer provides the POP3 user account, password, and

the POP3 host that the above listener will talk to.

listenerServer = email.server.com

commandProcessors specifies the command processors for this

transport.

commandProcessors = command.getcontentProcessor,\

command.runProcessor

If you don’t set deleteMail true, Pop3Listener will keep

processing the messages it has already seen. This is the

problem with POP3.

deleteMail = true

user = myuser

password = mypassword

For email transports, checkPassword should be false. The server

has no way to check the password for email requests, at this time.

checkPassword = false

pollRate specifies the number of seconds to wait before polling

Page 13 of 34

/ 4.3 email transport/9/22/04

the server.

pollRate = 10

##

[transport:core-test-email]

You will need to create an entry for this category in your

local.config with appropriate settings for the user and

password keys.

#

= myuser

= mypassword

The following are possible accounts to use:

user = jftest1

password = sting1

user = jftest2

password = bla7th

user = jftest3

password = p09Aq1

user = jftest4

password = bar?none

threadPool = main

listener =

com.geoworks.premion.server.transport.email.pop3.Pop3Listener

service = core-test

requestTranslators =

com.geoworks.premion.server.transport.email.EmailToTextKeywordTransl

ator

dispatcher =

com.geoworks.premion.server.transport.email.smtp.SmtpDispatcher

dispatcherServer = almh.geoworks.com

listenerServer = almh.geoworks.com

replyDomain = geoworks.com

commandProcessors =

com.geoworks.premion.server.command.getcontentProcessor, \

com.geoworks.premion.server.command.runProcessor

If you don't delete mail, Pop3Listener will keep processing the

messages it has already seen. This is the problem with POP3.

deleteMail = true

Specifies the type of translation performed on the incoming email.

http://www.SeniorManagementServices.com/7-steps-booklet-request.html

Page 17 of 34

/ 4.3 email transport/9/22/04

4.3.3. SMTP – Receiving Email (SmtpListener)

4.3.3.1. Syntax

SmtpListener called by: Main (via InitializationBlockade.open).

SmtpListener calls ??

4.3.3.2. Public Methods

SmtpListener

init

4.3.3.3. Purpose of SmtpListener Transport

The purpose of SmtpListener is to:

• wait for connections on the configured port (usually port 25)

• spin off a new thread to run SmtpRequestHandler

NOTE: SmtpListener currently does not use JavaMail to parse the incoming messages.

SMTP (Simple Mail Transfer Protocol) is the standard email protocol on the Internet. It is

a TCP/IP protocol that defines the message format and the message transfer agent

(MTA), which stores and forwards the mail. SMTP was originally designed for ASCII

text only, but MIME and other encoding methods enable program and multimedia files to

be attached to email messages.

SMTP servers route SMTP messages throughout the Internet to a mail server, which

stores incoming mail.

NOTE: SMTP receive is a simple implementation, which does not support multi-part

messages.

For receiving, SMTP does the following:

• directly receives incoming messages through SMTP port.

• can accept mail for an arbitrary number of accounts

Page 19 of 34

/ 4.3 email transport/9/22/04

4.3.3.5. Output from smtpListener

Anything else? syntax parameters, descriptions, files, controls, options, external

variables, data types, etc.?

4.3.3.6. Module Details (as appropriate to explain what module DOES – not how it

does it)

Anything else? syntax parameters, descriptions, files, controls, options, external

variables, data types, etc.?

4.3.3.7. Request Variables

When MS+ receives an email, MS+ sets several request variables according to the

incoming message. They are as follows:

Variable Name Type Description Example

request:email:header Map Name/value pairs of

message headers.

(Name:)

“request:email:hea

der:content-type”

request:email:body List

or

Map

A body may be single- or

multi-part. For single-part,

body will be a Map with

attributes of the single part.

For multi-part, body will be

a List of parts, each

represented by a Map with

its attributes. The body part

structure is described

below.

Each body part has the following structure:

Page 20 of 34

/ 4.3 email transport/9/22/04

Value name Type Description Examples

content Byte

array or

String

Content associated with this part.

character-

encoding
String Character set used to encode the

content of this body part, if body

is a string.

S-JIS, EUC-JP,

US-ASCII

type String MIME type of this part. “text”

sub-type String MIME subtype of this part. “html”

header Map Name and value pairs for

outgoing HTTP headers. The

empty map is created at the

beginning of request handling.

Page 21 of 34

/ 4.3 email transport/9/22/04

4.3.4. SMTP – Sending Email Module

4.3.4.1. Syntax

 DISPATCH Tag calls SmtpDispatcher and SmtpRequestHandler

4.3.4.2. Public Methods

init

instantiateResource

dispatchLow

getInputStream

getOutputStream

4.3.4.3. Purpose of smtpDispatcher

The purpose of SmtpDispatcher is to:

• ensure that transport has been set

• determine server and account settings

• build an email using the output variables (output:email:*)

• dispatch content through SMTP email transport (dispatcherServer is used because

an email transport may be both listener and dispatcher)

Note that the Dispatcher dispatches one email at a time. To dispatch different formats for

the same message requires a separate dispatch for each format.

SMTP (Simple Mail Transfer Protocol) is the standard email protocol on the Internet. It is

a TCP/IP protocol that defines the message format and the message transfer agent

(MTA), which stores and forwards the mail. SMTP was originally designed for ASCII

text only, but MIME and other encoding methods enable program and multimedia files to

be attached to email messages.

SMTP servers route SMTP messages throughout the Internet to a mail server, which

stores incoming mail.

For sending, SMTP (based on Java Mail) does the following:

http://www.SeniorManagementServices.com/7-steps-booklet-request.html

Page 26 of 34

/ 4.3 email transport/9/22/04

4.3.4.8. Dispatching the Email

It is easy to send email from a querymap. You need the message body and destination

email addresses (in RFC822 format). The variable name “output” is the default output

variable, but any variable name can be used for in-querymap dispatching.

Value name Type Description Examples Required

?

output:body List

or

Map

A single- or multi-part

body, as specified in the

general dispatch

specification.

Y

output:email:

header
Map Name and value pairs

for outgoing email

headers. The empty map

is created at the

beginning of request

handling.

N

output:email:

header:reply-

address

String Name from which the

mail will appear to be

sent.

Daemon N, if

‘user’ set

in config

file

output:email:

address
String

or

List

A single String

containing a destination

address, or a List of

Strings each with one

address. These will not

appear in the outgoing

email, similar to using

“Bcc:.”

“Some Person”

<some@server.com>,

someone@myserver.o

rg

N, if ‘to’

is used

output:email: String A single String “Some Person” N, if

Page 27 of 34

/ 4.3 email transport/9/22/04

to or

List

containing a destination

address, or a List of

Strings each with one

address. These will

appear in the “To:” field

of the outgoing email.

<some@server.com>,

someone@myserver.o

rg

‘address’

is used

output:email:

charset
String Character encoding for

the email headers. If this

is not set, the system

default will be used.

S-JIS, EUC-JP, US-

ASCII

N

Each body part conforms to the general dispatch specification, but supports the following

attribute:

Value

name

Type Description Examples Required?

header Map Name and value pairs for headers

associated with this part.

N

Below is an example of how to set up the request variables before calling DISPATCH.

<*dispatch transport=‘test-email’*>

<*map*>

<*varpair name=‘body’*><*map*>

<*varpair name=‘content’*>You have successfully received a

test message.<*/varpair*>

<*varpair name=‘character-encoding’*>Cp1252<*/varpair*>

<*/map*><*/varpair*>

<*varpair name=‘email’*><*map*>

<*varpair name=‘address’*><*list*>

<*param*>nameguy@geoworks.com<*/param*>

<*param*>tigger@geoworks.com<*/param*>

<*/list*><*/varpair*>

<*varpair name=‘header:subject’*>Here is your test

message.<*/varpair*>

<*/map*><*/varpair*>

http://www.SeniorManagementServices.com/7-steps-booklet-request.html

Page 30 of 34

/ 4.3 email transport/9/22/04

4.3.5.6. Module Details (as appropriate to explain what module DOES – not how it

does it)

Anything else? syntax parameters, descriptions, files, controls, options, external

variables, data types, etc.?

4.3.6. Revision History

Date Author Details

1 February 2000 Paul Canavese Initial revision.

2 February 2001 Mike Hayden Edit/format for 4.0

15 February 2001 Mike Hayden Updated Overview Section

2 April 2001 Mike Hayden General update with

additional information

http://www.SeniorManagementServices.com/7-steps-booklet-request.html

	E M A I L T R A N S P OR T
	Requirements
	Typical Email / MS+ Interactions
	Request Translators

	POP3
	SMTP

